Neuro-control of fixed offshore structures under earthquake

An intelligent control technique using a neural network is proposed for seismic protection of offshore structures. Fluid-structure interaction was considered in developing controller and a training algorithm for the neuron-controller is presented. In the numerical example, the performance of the pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering structures 2009-02, Vol.31 (2), p.517-522
1. Verfasser: Kim, Dong Hyawn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 522
container_issue 2
container_start_page 517
container_title Engineering structures
container_volume 31
creator Kim, Dong Hyawn
description An intelligent control technique using a neural network is proposed for seismic protection of offshore structures. Fluid-structure interaction was considered in developing controller and a training algorithm for the neuron-controller is presented. In the numerical example, the performance of the proposed neuron-controller was evaluated. Moreover, a neuron-controller is tested even when it is trained by using a linearized equation of motion for fluid structure interaction (FSI). Based on the examples, it can be concluded that the proposed neuro-control scheme can be used for offshore structures which have intrinsic nonlinearity due to FSI.
doi_str_mv 10.1016/j.engstruct.2008.10.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36083363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029608003313</els_id><sourcerecordid>36083363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-cbd885b4785eff6632fe4c0d7bae4a0e27d767bbfcba8778eb441e5eff835e733</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwG-gFbi1O0yaZOE0TX9IEFzhHaeqwjq7ZkhbBvyfVpl05xYofv7YeQq4pZBQov1tn2H2G3g-mz3IAGX8zgPyETKgULBUsZ6dkArSgKeQzfk4uQlhDJKSECbl_xcG71Liu965NnE1s84N1LGxYOY_JPnnwGJKhq9EnqH2_2g36Cy_JmdVtwKvDOyUfjw_vi-d0-fb0spgvU1OA6FNT1VKWVSFkidZyznKLhYFaVBoLDZiLWnBRVdZUWgohsSoKiiMrWYmCsSm53eduvdsNGHq1aYLBttUduiEoxkEyxv8Hc2CSz7iMoNiDxrsQPFq19c1G-19FQY1W1VodrarR6tiIzuLkzWGFDka31uvONOE4nlMK8ZIycvM9h1HMd4NeBdNgZ7BuPMbM2jX_7voDmZSTZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20386968</pqid></control><display><type>article</type><title>Neuro-control of fixed offshore structures under earthquake</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kim, Dong Hyawn</creator><creatorcontrib>Kim, Dong Hyawn</creatorcontrib><description>An intelligent control technique using a neural network is proposed for seismic protection of offshore structures. Fluid-structure interaction was considered in developing controller and a training algorithm for the neuron-controller is presented. In the numerical example, the performance of the proposed neuron-controller was evaluated. Moreover, a neuron-controller is tested even when it is trained by using a linearized equation of motion for fluid structure interaction (FSI). Based on the examples, it can be concluded that the proposed neuro-control scheme can be used for offshore structures which have intrinsic nonlinearity due to FSI.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2008.10.002</identifier><identifier>CODEN: ENSTDF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Control ; Exact sciences and technology ; Fluid structure interaction ; Geotechnics ; Hydraulic constructions ; Intelligent control ; Neural network ; Offshore structure ; Offshore structure (platforms, tanks, etc.) ; Seismic protection ; Stresses. Safety ; Structural analysis. Stresses ; Structure-soil interaction</subject><ispartof>Engineering structures, 2009-02, Vol.31 (2), p.517-522</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-cbd885b4785eff6632fe4c0d7bae4a0e27d767bbfcba8778eb441e5eff835e733</citedby><cites>FETCH-LOGICAL-c407t-cbd885b4785eff6632fe4c0d7bae4a0e27d767bbfcba8778eb441e5eff835e733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engstruct.2008.10.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21103635$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Dong Hyawn</creatorcontrib><title>Neuro-control of fixed offshore structures under earthquake</title><title>Engineering structures</title><description>An intelligent control technique using a neural network is proposed for seismic protection of offshore structures. Fluid-structure interaction was considered in developing controller and a training algorithm for the neuron-controller is presented. In the numerical example, the performance of the proposed neuron-controller was evaluated. Moreover, a neuron-controller is tested even when it is trained by using a linearized equation of motion for fluid structure interaction (FSI). Based on the examples, it can be concluded that the proposed neuro-control scheme can be used for offshore structures which have intrinsic nonlinearity due to FSI.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Control</subject><subject>Exact sciences and technology</subject><subject>Fluid structure interaction</subject><subject>Geotechnics</subject><subject>Hydraulic constructions</subject><subject>Intelligent control</subject><subject>Neural network</subject><subject>Offshore structure</subject><subject>Offshore structure (platforms, tanks, etc.)</subject><subject>Seismic protection</subject><subject>Stresses. Safety</subject><subject>Structural analysis. Stresses</subject><subject>Structure-soil interaction</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmPwG-gFbi1O0yaZOE0TX9IEFzhHaeqwjq7ZkhbBvyfVpl05xYofv7YeQq4pZBQov1tn2H2G3g-mz3IAGX8zgPyETKgULBUsZ6dkArSgKeQzfk4uQlhDJKSECbl_xcG71Liu965NnE1s84N1LGxYOY_JPnnwGJKhq9EnqH2_2g36Cy_JmdVtwKvDOyUfjw_vi-d0-fb0spgvU1OA6FNT1VKWVSFkidZyznKLhYFaVBoLDZiLWnBRVdZUWgohsSoKiiMrWYmCsSm53eduvdsNGHq1aYLBttUduiEoxkEyxv8Hc2CSz7iMoNiDxrsQPFq19c1G-19FQY1W1VodrarR6tiIzuLkzWGFDka31uvONOE4nlMK8ZIycvM9h1HMd4NeBdNgZ7BuPMbM2jX_7voDmZSTZw</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Kim, Dong Hyawn</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SM</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20090201</creationdate><title>Neuro-control of fixed offshore structures under earthquake</title><author>Kim, Dong Hyawn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-cbd885b4785eff6632fe4c0d7bae4a0e27d767bbfcba8778eb441e5eff835e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Control</topic><topic>Exact sciences and technology</topic><topic>Fluid structure interaction</topic><topic>Geotechnics</topic><topic>Hydraulic constructions</topic><topic>Intelligent control</topic><topic>Neural network</topic><topic>Offshore structure</topic><topic>Offshore structure (platforms, tanks, etc.)</topic><topic>Seismic protection</topic><topic>Stresses. Safety</topic><topic>Structural analysis. Stresses</topic><topic>Structure-soil interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dong Hyawn</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earthquake Engineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dong Hyawn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuro-control of fixed offshore structures under earthquake</atitle><jtitle>Engineering structures</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>31</volume><issue>2</issue><spage>517</spage><epage>522</epage><pages>517-522</pages><issn>0141-0296</issn><eissn>1873-7323</eissn><coden>ENSTDF</coden><abstract>An intelligent control technique using a neural network is proposed for seismic protection of offshore structures. Fluid-structure interaction was considered in developing controller and a training algorithm for the neuron-controller is presented. In the numerical example, the performance of the proposed neuron-controller was evaluated. Moreover, a neuron-controller is tested even when it is trained by using a linearized equation of motion for fluid structure interaction (FSI). Based on the examples, it can be concluded that the proposed neuro-control scheme can be used for offshore structures which have intrinsic nonlinearity due to FSI.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2008.10.002</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-0296
ispartof Engineering structures, 2009-02, Vol.31 (2), p.517-522
issn 0141-0296
1873-7323
language eng
recordid cdi_proquest_miscellaneous_36083363
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Buildings. Public works
Control
Exact sciences and technology
Fluid structure interaction
Geotechnics
Hydraulic constructions
Intelligent control
Neural network
Offshore structure
Offshore structure (platforms, tanks, etc.)
Seismic protection
Stresses. Safety
Structural analysis. Stresses
Structure-soil interaction
title Neuro-control of fixed offshore structures under earthquake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuro-control%20of%20fixed%20offshore%20structures%20under%20earthquake&rft.jtitle=Engineering%20structures&rft.au=Kim,%20Dong%20Hyawn&rft.date=2009-02-01&rft.volume=31&rft.issue=2&rft.spage=517&rft.epage=522&rft.pages=517-522&rft.issn=0141-0296&rft.eissn=1873-7323&rft.coden=ENSTDF&rft_id=info:doi/10.1016/j.engstruct.2008.10.002&rft_dat=%3Cproquest_cross%3E36083363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20386968&rft_id=info:pmid/&rft_els_id=S0141029608003313&rfr_iscdi=true