Neuro-control of fixed offshore structures under earthquake
An intelligent control technique using a neural network is proposed for seismic protection of offshore structures. Fluid-structure interaction was considered in developing controller and a training algorithm for the neuron-controller is presented. In the numerical example, the performance of the pro...
Gespeichert in:
Veröffentlicht in: | Engineering structures 2009-02, Vol.31 (2), p.517-522 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 522 |
---|---|
container_issue | 2 |
container_start_page | 517 |
container_title | Engineering structures |
container_volume | 31 |
creator | Kim, Dong Hyawn |
description | An intelligent control technique using a neural network is proposed for seismic protection of offshore structures. Fluid-structure interaction was considered in developing controller and a training algorithm for the neuron-controller is presented. In the numerical example, the performance of the proposed neuron-controller was evaluated. Moreover, a neuron-controller is tested even when it is trained by using a linearized equation of motion for fluid structure interaction (FSI). Based on the examples, it can be concluded that the proposed neuro-control scheme can be used for offshore structures which have intrinsic nonlinearity due to FSI. |
doi_str_mv | 10.1016/j.engstruct.2008.10.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36083363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029608003313</els_id><sourcerecordid>36083363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-cbd885b4785eff6632fe4c0d7bae4a0e27d767bbfcba8778eb441e5eff835e733</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwG-gFbi1O0yaZOE0TX9IEFzhHaeqwjq7ZkhbBvyfVpl05xYofv7YeQq4pZBQov1tn2H2G3g-mz3IAGX8zgPyETKgULBUsZ6dkArSgKeQzfk4uQlhDJKSECbl_xcG71Liu965NnE1s84N1LGxYOY_JPnnwGJKhq9EnqH2_2g36Cy_JmdVtwKvDOyUfjw_vi-d0-fb0spgvU1OA6FNT1VKWVSFkidZyznKLhYFaVBoLDZiLWnBRVdZUWgohsSoKiiMrWYmCsSm53eduvdsNGHq1aYLBttUduiEoxkEyxv8Hc2CSz7iMoNiDxrsQPFq19c1G-19FQY1W1VodrarR6tiIzuLkzWGFDka31uvONOE4nlMK8ZIycvM9h1HMd4NeBdNgZ7BuPMbM2jX_7voDmZSTZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20386968</pqid></control><display><type>article</type><title>Neuro-control of fixed offshore structures under earthquake</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kim, Dong Hyawn</creator><creatorcontrib>Kim, Dong Hyawn</creatorcontrib><description>An intelligent control technique using a neural network is proposed for seismic protection of offshore structures. Fluid-structure interaction was considered in developing controller and a training algorithm for the neuron-controller is presented. In the numerical example, the performance of the proposed neuron-controller was evaluated. Moreover, a neuron-controller is tested even when it is trained by using a linearized equation of motion for fluid structure interaction (FSI). Based on the examples, it can be concluded that the proposed neuro-control scheme can be used for offshore structures which have intrinsic nonlinearity due to FSI.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2008.10.002</identifier><identifier>CODEN: ENSTDF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Control ; Exact sciences and technology ; Fluid structure interaction ; Geotechnics ; Hydraulic constructions ; Intelligent control ; Neural network ; Offshore structure ; Offshore structure (platforms, tanks, etc.) ; Seismic protection ; Stresses. Safety ; Structural analysis. Stresses ; Structure-soil interaction</subject><ispartof>Engineering structures, 2009-02, Vol.31 (2), p.517-522</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-cbd885b4785eff6632fe4c0d7bae4a0e27d767bbfcba8778eb441e5eff835e733</citedby><cites>FETCH-LOGICAL-c407t-cbd885b4785eff6632fe4c0d7bae4a0e27d767bbfcba8778eb441e5eff835e733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engstruct.2008.10.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21103635$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Dong Hyawn</creatorcontrib><title>Neuro-control of fixed offshore structures under earthquake</title><title>Engineering structures</title><description>An intelligent control technique using a neural network is proposed for seismic protection of offshore structures. Fluid-structure interaction was considered in developing controller and a training algorithm for the neuron-controller is presented. In the numerical example, the performance of the proposed neuron-controller was evaluated. Moreover, a neuron-controller is tested even when it is trained by using a linearized equation of motion for fluid structure interaction (FSI). Based on the examples, it can be concluded that the proposed neuro-control scheme can be used for offshore structures which have intrinsic nonlinearity due to FSI.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Control</subject><subject>Exact sciences and technology</subject><subject>Fluid structure interaction</subject><subject>Geotechnics</subject><subject>Hydraulic constructions</subject><subject>Intelligent control</subject><subject>Neural network</subject><subject>Offshore structure</subject><subject>Offshore structure (platforms, tanks, etc.)</subject><subject>Seismic protection</subject><subject>Stresses. Safety</subject><subject>Structural analysis. Stresses</subject><subject>Structure-soil interaction</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmPwG-gFbi1O0yaZOE0TX9IEFzhHaeqwjq7ZkhbBvyfVpl05xYofv7YeQq4pZBQov1tn2H2G3g-mz3IAGX8zgPyETKgULBUsZ6dkArSgKeQzfk4uQlhDJKSECbl_xcG71Liu965NnE1s84N1LGxYOY_JPnnwGJKhq9EnqH2_2g36Cy_JmdVtwKvDOyUfjw_vi-d0-fb0spgvU1OA6FNT1VKWVSFkidZyznKLhYFaVBoLDZiLWnBRVdZUWgohsSoKiiMrWYmCsSm53eduvdsNGHq1aYLBttUduiEoxkEyxv8Hc2CSz7iMoNiDxrsQPFq19c1G-19FQY1W1VodrarR6tiIzuLkzWGFDka31uvONOE4nlMK8ZIycvM9h1HMd4NeBdNgZ7BuPMbM2jX_7voDmZSTZw</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Kim, Dong Hyawn</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SM</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20090201</creationdate><title>Neuro-control of fixed offshore structures under earthquake</title><author>Kim, Dong Hyawn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-cbd885b4785eff6632fe4c0d7bae4a0e27d767bbfcba8778eb441e5eff835e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Control</topic><topic>Exact sciences and technology</topic><topic>Fluid structure interaction</topic><topic>Geotechnics</topic><topic>Hydraulic constructions</topic><topic>Intelligent control</topic><topic>Neural network</topic><topic>Offshore structure</topic><topic>Offshore structure (platforms, tanks, etc.)</topic><topic>Seismic protection</topic><topic>Stresses. Safety</topic><topic>Structural analysis. Stresses</topic><topic>Structure-soil interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dong Hyawn</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earthquake Engineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dong Hyawn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuro-control of fixed offshore structures under earthquake</atitle><jtitle>Engineering structures</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>31</volume><issue>2</issue><spage>517</spage><epage>522</epage><pages>517-522</pages><issn>0141-0296</issn><eissn>1873-7323</eissn><coden>ENSTDF</coden><abstract>An intelligent control technique using a neural network is proposed for seismic protection of offshore structures. Fluid-structure interaction was considered in developing controller and a training algorithm for the neuron-controller is presented. In the numerical example, the performance of the proposed neuron-controller was evaluated. Moreover, a neuron-controller is tested even when it is trained by using a linearized equation of motion for fluid structure interaction (FSI). Based on the examples, it can be concluded that the proposed neuro-control scheme can be used for offshore structures which have intrinsic nonlinearity due to FSI.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2008.10.002</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-0296 |
ispartof | Engineering structures, 2009-02, Vol.31 (2), p.517-522 |
issn | 0141-0296 1873-7323 |
language | eng |
recordid | cdi_proquest_miscellaneous_36083363 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Buildings. Public works Control Exact sciences and technology Fluid structure interaction Geotechnics Hydraulic constructions Intelligent control Neural network Offshore structure Offshore structure (platforms, tanks, etc.) Seismic protection Stresses. Safety Structural analysis. Stresses Structure-soil interaction |
title | Neuro-control of fixed offshore structures under earthquake |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuro-control%20of%20fixed%20offshore%20structures%20under%20earthquake&rft.jtitle=Engineering%20structures&rft.au=Kim,%20Dong%20Hyawn&rft.date=2009-02-01&rft.volume=31&rft.issue=2&rft.spage=517&rft.epage=522&rft.pages=517-522&rft.issn=0141-0296&rft.eissn=1873-7323&rft.coden=ENSTDF&rft_id=info:doi/10.1016/j.engstruct.2008.10.002&rft_dat=%3Cproquest_cross%3E36083363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20386968&rft_id=info:pmid/&rft_els_id=S0141029608003313&rfr_iscdi=true |