Influence of microstructure and strain rate on adiabatic shearing behavior in Ti–6Al–4V alloys
Adiabatic shearing behavior of Ti–6Al–4V alloys with bimodal and lamellar microstructures is investigated at strain rates ranging from 10 3 s −1 to 10 4 s −1 by Spilt Hopkinson Pressure Bar and Taylor impact. The characteristic of fracture is closely related with the behavior of adiabatic shear band...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2009-02, Vol.501 (1), p.30-36 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | 1 |
container_start_page | 30 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 501 |
creator | Liu, Xinqin Tan, Chengwen Zhang, Jing Hu, Yangguang Ma, Honglei Wang, Fuchi Cai, Hongnian |
description | Adiabatic shearing behavior of Ti–6Al–4V alloys with bimodal and lamellar microstructures is investigated at strain rates ranging from 10
3
s
−1 to 10
4
s
−1 by Spilt Hopkinson Pressure Bar and Taylor impact. The characteristic of fracture is closely related with the behavior of adiabatic shear band in Ti–6Al–4V alloys. In bimodal microstructure at strain rate of 10
3
s
−1, the adiabatic shear bands are regularly spaced and orientated along the maximum shear stress plane. In case of the lamellar microstructure, when the strain rates increase from 4000
s
−1 to 6000
s
−1, the adiabatic shear bands go through the transition from self-organization to branching off and interconnecting into a net-like structure. At strain rate of 10
4
s
−1 by Taylor impact, the regularly spaced adiabatic shearing cracks cause that the fracture surface makes an angle of 45° with the impacted end of the projectile in bimodal microstructure. The net-like adiabatic shearing cracks in lamellar microstructure result in the fragmentation of the projectile head, the angle is about 0°. |
doi_str_mv | 10.1016/j.msea.2008.09.076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36080130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509308011271</els_id><sourcerecordid>36080130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-243bad21e8bc3b821bc2d5c347c72372fb677a98bba4b348ba32ed2256920a273</originalsourceid><addsrcrecordid>eNp9kL9OwzAQhy0EEqXwAkxeYEs426mTSCwI8adSJZbCap0dh7pKk2InlbrxDrwhT4KjIkaWO5303Z1-HyGXDFIGTN6s002wmHKAIoUyhVwekQkrcpFkpZDHZAIlZ8kMSnFKzkJYAwDLYDYhet7WzWBbY2lX040zvgu9H0w_eEuxrWic0LXUYx-JlmLlUGPvDA0ri96171TbFe5c52nElu7780veNbFmbxSbptuHc3JSYxPsxW-fktfHh-X9c7J4eZrf3y0SIyTrE54JjRVnttBG6IIzbXg1MyLLTc5Fzmst8xzLQmvMtMgKjYLbivOZLDkgz8WUXB_ubn33MdjQq40LxjYNtrYbghISCmACIsgP4Bg2eFurrXcb9HvFQI061VqNOtWoU0Gpos64dPV7HYPBpvbYGhf-NjkDkFyIyN0eOBuj7pz1Khg3-q2ct6ZXVef-e_MDPMiNZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36080130</pqid></control><display><type>article</type><title>Influence of microstructure and strain rate on adiabatic shearing behavior in Ti–6Al–4V alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Xinqin ; Tan, Chengwen ; Zhang, Jing ; Hu, Yangguang ; Ma, Honglei ; Wang, Fuchi ; Cai, Hongnian</creator><creatorcontrib>Liu, Xinqin ; Tan, Chengwen ; Zhang, Jing ; Hu, Yangguang ; Ma, Honglei ; Wang, Fuchi ; Cai, Hongnian</creatorcontrib><description>Adiabatic shearing behavior of Ti–6Al–4V alloys with bimodal and lamellar microstructures is investigated at strain rates ranging from 10
3
s
−1 to 10
4
s
−1 by Spilt Hopkinson Pressure Bar and Taylor impact. The characteristic of fracture is closely related with the behavior of adiabatic shear band in Ti–6Al–4V alloys. In bimodal microstructure at strain rate of 10
3
s
−1, the adiabatic shear bands are regularly spaced and orientated along the maximum shear stress plane. In case of the lamellar microstructure, when the strain rates increase from 4000
s
−1 to 6000
s
−1, the adiabatic shear bands go through the transition from self-organization to branching off and interconnecting into a net-like structure. At strain rate of 10
4
s
−1 by Taylor impact, the regularly spaced adiabatic shearing cracks cause that the fracture surface makes an angle of 45° with the impacted end of the projectile in bimodal microstructure. The net-like adiabatic shearing cracks in lamellar microstructure result in the fragmentation of the projectile head, the angle is about 0°.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2008.09.076</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Adiabatic shear band ; Applied sciences ; Exact sciences and technology ; Fracture ; Fractures ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microstructure ; Strain rate ; Ti–6Al–4V</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2009-02, Vol.501 (1), p.30-36</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-243bad21e8bc3b821bc2d5c347c72372fb677a98bba4b348ba32ed2256920a273</citedby><cites>FETCH-LOGICAL-c361t-243bad21e8bc3b821bc2d5c347c72372fb677a98bba4b348ba32ed2256920a273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509308011271$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21006233$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xinqin</creatorcontrib><creatorcontrib>Tan, Chengwen</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Hu, Yangguang</creatorcontrib><creatorcontrib>Ma, Honglei</creatorcontrib><creatorcontrib>Wang, Fuchi</creatorcontrib><creatorcontrib>Cai, Hongnian</creatorcontrib><title>Influence of microstructure and strain rate on adiabatic shearing behavior in Ti–6Al–4V alloys</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Adiabatic shearing behavior of Ti–6Al–4V alloys with bimodal and lamellar microstructures is investigated at strain rates ranging from 10
3
s
−1 to 10
4
s
−1 by Spilt Hopkinson Pressure Bar and Taylor impact. The characteristic of fracture is closely related with the behavior of adiabatic shear band in Ti–6Al–4V alloys. In bimodal microstructure at strain rate of 10
3
s
−1, the adiabatic shear bands are regularly spaced and orientated along the maximum shear stress plane. In case of the lamellar microstructure, when the strain rates increase from 4000
s
−1 to 6000
s
−1, the adiabatic shear bands go through the transition from self-organization to branching off and interconnecting into a net-like structure. At strain rate of 10
4
s
−1 by Taylor impact, the regularly spaced adiabatic shearing cracks cause that the fracture surface makes an angle of 45° with the impacted end of the projectile in bimodal microstructure. The net-like adiabatic shearing cracks in lamellar microstructure result in the fragmentation of the projectile head, the angle is about 0°.</description><subject>Adiabatic shear band</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Fracture</subject><subject>Fractures</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Strain rate</subject><subject>Ti–6Al–4V</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQhy0EEqXwAkxeYEs426mTSCwI8adSJZbCap0dh7pKk2InlbrxDrwhT4KjIkaWO5303Z1-HyGXDFIGTN6s002wmHKAIoUyhVwekQkrcpFkpZDHZAIlZ8kMSnFKzkJYAwDLYDYhet7WzWBbY2lX040zvgu9H0w_eEuxrWic0LXUYx-JlmLlUGPvDA0ri96171TbFe5c52nElu7780veNbFmbxSbptuHc3JSYxPsxW-fktfHh-X9c7J4eZrf3y0SIyTrE54JjRVnttBG6IIzbXg1MyLLTc5Fzmst8xzLQmvMtMgKjYLbivOZLDkgz8WUXB_ubn33MdjQq40LxjYNtrYbghISCmACIsgP4Bg2eFurrXcb9HvFQI061VqNOtWoU0Gpos64dPV7HYPBpvbYGhf-NjkDkFyIyN0eOBuj7pz1Khg3-q2ct6ZXVef-e_MDPMiNZA</recordid><startdate>20090215</startdate><enddate>20090215</enddate><creator>Liu, Xinqin</creator><creator>Tan, Chengwen</creator><creator>Zhang, Jing</creator><creator>Hu, Yangguang</creator><creator>Ma, Honglei</creator><creator>Wang, Fuchi</creator><creator>Cai, Hongnian</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090215</creationdate><title>Influence of microstructure and strain rate on adiabatic shearing behavior in Ti–6Al–4V alloys</title><author>Liu, Xinqin ; Tan, Chengwen ; Zhang, Jing ; Hu, Yangguang ; Ma, Honglei ; Wang, Fuchi ; Cai, Hongnian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-243bad21e8bc3b821bc2d5c347c72372fb677a98bba4b348ba32ed2256920a273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adiabatic shear band</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Fracture</topic><topic>Fractures</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Strain rate</topic><topic>Ti–6Al–4V</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xinqin</creatorcontrib><creatorcontrib>Tan, Chengwen</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Hu, Yangguang</creatorcontrib><creatorcontrib>Ma, Honglei</creatorcontrib><creatorcontrib>Wang, Fuchi</creatorcontrib><creatorcontrib>Cai, Hongnian</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xinqin</au><au>Tan, Chengwen</au><au>Zhang, Jing</au><au>Hu, Yangguang</au><au>Ma, Honglei</au><au>Wang, Fuchi</au><au>Cai, Hongnian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of microstructure and strain rate on adiabatic shearing behavior in Ti–6Al–4V alloys</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2009-02-15</date><risdate>2009</risdate><volume>501</volume><issue>1</issue><spage>30</spage><epage>36</epage><pages>30-36</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Adiabatic shearing behavior of Ti–6Al–4V alloys with bimodal and lamellar microstructures is investigated at strain rates ranging from 10
3
s
−1 to 10
4
s
−1 by Spilt Hopkinson Pressure Bar and Taylor impact. The characteristic of fracture is closely related with the behavior of adiabatic shear band in Ti–6Al–4V alloys. In bimodal microstructure at strain rate of 10
3
s
−1, the adiabatic shear bands are regularly spaced and orientated along the maximum shear stress plane. In case of the lamellar microstructure, when the strain rates increase from 4000
s
−1 to 6000
s
−1, the adiabatic shear bands go through the transition from self-organization to branching off and interconnecting into a net-like structure. At strain rate of 10
4
s
−1 by Taylor impact, the regularly spaced adiabatic shearing cracks cause that the fracture surface makes an angle of 45° with the impacted end of the projectile in bimodal microstructure. The net-like adiabatic shearing cracks in lamellar microstructure result in the fragmentation of the projectile head, the angle is about 0°.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2008.09.076</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2009-02, Vol.501 (1), p.30-36 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_36080130 |
source | Elsevier ScienceDirect Journals |
subjects | Adiabatic shear band Applied sciences Exact sciences and technology Fracture Fractures Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Microstructure Strain rate Ti–6Al–4V |
title | Influence of microstructure and strain rate on adiabatic shearing behavior in Ti–6Al–4V alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A32%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20microstructure%20and%20strain%20rate%20on%20adiabatic%20shearing%20behavior%20in%20Ti%E2%80%936Al%E2%80%934V%20alloys&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Liu,%20Xinqin&rft.date=2009-02-15&rft.volume=501&rft.issue=1&rft.spage=30&rft.epage=36&rft.pages=30-36&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2008.09.076&rft_dat=%3Cproquest_cross%3E36080130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36080130&rft_id=info:pmid/&rft_els_id=S0921509308011271&rfr_iscdi=true |