Influence of microstructure and strain rate on adiabatic shearing behavior in Ti–6Al–4V alloys

Adiabatic shearing behavior of Ti–6Al–4V alloys with bimodal and lamellar microstructures is investigated at strain rates ranging from 10 3 s −1 to 10 4 s −1 by Spilt Hopkinson Pressure Bar and Taylor impact. The characteristic of fracture is closely related with the behavior of adiabatic shear band...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2009-02, Vol.501 (1), p.30-36
Hauptverfasser: Liu, Xinqin, Tan, Chengwen, Zhang, Jing, Hu, Yangguang, Ma, Honglei, Wang, Fuchi, Cai, Hongnian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 1
container_start_page 30
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 501
creator Liu, Xinqin
Tan, Chengwen
Zhang, Jing
Hu, Yangguang
Ma, Honglei
Wang, Fuchi
Cai, Hongnian
description Adiabatic shearing behavior of Ti–6Al–4V alloys with bimodal and lamellar microstructures is investigated at strain rates ranging from 10 3 s −1 to 10 4 s −1 by Spilt Hopkinson Pressure Bar and Taylor impact. The characteristic of fracture is closely related with the behavior of adiabatic shear band in Ti–6Al–4V alloys. In bimodal microstructure at strain rate of 10 3 s −1, the adiabatic shear bands are regularly spaced and orientated along the maximum shear stress plane. In case of the lamellar microstructure, when the strain rates increase from 4000 s −1 to 6000 s −1, the adiabatic shear bands go through the transition from self-organization to branching off and interconnecting into a net-like structure. At strain rate of 10 4 s −1 by Taylor impact, the regularly spaced adiabatic shearing cracks cause that the fracture surface makes an angle of 45° with the impacted end of the projectile in bimodal microstructure. The net-like adiabatic shearing cracks in lamellar microstructure result in the fragmentation of the projectile head, the angle is about 0°.
doi_str_mv 10.1016/j.msea.2008.09.076
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36080130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509308011271</els_id><sourcerecordid>36080130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-243bad21e8bc3b821bc2d5c347c72372fb677a98bba4b348ba32ed2256920a273</originalsourceid><addsrcrecordid>eNp9kL9OwzAQhy0EEqXwAkxeYEs426mTSCwI8adSJZbCap0dh7pKk2InlbrxDrwhT4KjIkaWO5303Z1-HyGXDFIGTN6s002wmHKAIoUyhVwekQkrcpFkpZDHZAIlZ8kMSnFKzkJYAwDLYDYhet7WzWBbY2lX040zvgu9H0w_eEuxrWic0LXUYx-JlmLlUGPvDA0ri96171TbFe5c52nElu7780veNbFmbxSbptuHc3JSYxPsxW-fktfHh-X9c7J4eZrf3y0SIyTrE54JjRVnttBG6IIzbXg1MyLLTc5Fzmst8xzLQmvMtMgKjYLbivOZLDkgz8WUXB_ubn33MdjQq40LxjYNtrYbghISCmACIsgP4Bg2eFurrXcb9HvFQI061VqNOtWoU0Gpos64dPV7HYPBpvbYGhf-NjkDkFyIyN0eOBuj7pz1Khg3-q2ct6ZXVef-e_MDPMiNZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36080130</pqid></control><display><type>article</type><title>Influence of microstructure and strain rate on adiabatic shearing behavior in Ti–6Al–4V alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Xinqin ; Tan, Chengwen ; Zhang, Jing ; Hu, Yangguang ; Ma, Honglei ; Wang, Fuchi ; Cai, Hongnian</creator><creatorcontrib>Liu, Xinqin ; Tan, Chengwen ; Zhang, Jing ; Hu, Yangguang ; Ma, Honglei ; Wang, Fuchi ; Cai, Hongnian</creatorcontrib><description>Adiabatic shearing behavior of Ti–6Al–4V alloys with bimodal and lamellar microstructures is investigated at strain rates ranging from 10 3 s −1 to 10 4 s −1 by Spilt Hopkinson Pressure Bar and Taylor impact. The characteristic of fracture is closely related with the behavior of adiabatic shear band in Ti–6Al–4V alloys. In bimodal microstructure at strain rate of 10 3 s −1, the adiabatic shear bands are regularly spaced and orientated along the maximum shear stress plane. In case of the lamellar microstructure, when the strain rates increase from 4000 s −1 to 6000 s −1, the adiabatic shear bands go through the transition from self-organization to branching off and interconnecting into a net-like structure. At strain rate of 10 4 s −1 by Taylor impact, the regularly spaced adiabatic shearing cracks cause that the fracture surface makes an angle of 45° with the impacted end of the projectile in bimodal microstructure. The net-like adiabatic shearing cracks in lamellar microstructure result in the fragmentation of the projectile head, the angle is about 0°.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2008.09.076</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Adiabatic shear band ; Applied sciences ; Exact sciences and technology ; Fracture ; Fractures ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microstructure ; Strain rate ; Ti–6Al–4V</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2009-02, Vol.501 (1), p.30-36</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-243bad21e8bc3b821bc2d5c347c72372fb677a98bba4b348ba32ed2256920a273</citedby><cites>FETCH-LOGICAL-c361t-243bad21e8bc3b821bc2d5c347c72372fb677a98bba4b348ba32ed2256920a273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509308011271$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21006233$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xinqin</creatorcontrib><creatorcontrib>Tan, Chengwen</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Hu, Yangguang</creatorcontrib><creatorcontrib>Ma, Honglei</creatorcontrib><creatorcontrib>Wang, Fuchi</creatorcontrib><creatorcontrib>Cai, Hongnian</creatorcontrib><title>Influence of microstructure and strain rate on adiabatic shearing behavior in Ti–6Al–4V alloys</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Adiabatic shearing behavior of Ti–6Al–4V alloys with bimodal and lamellar microstructures is investigated at strain rates ranging from 10 3 s −1 to 10 4 s −1 by Spilt Hopkinson Pressure Bar and Taylor impact. The characteristic of fracture is closely related with the behavior of adiabatic shear band in Ti–6Al–4V alloys. In bimodal microstructure at strain rate of 10 3 s −1, the adiabatic shear bands are regularly spaced and orientated along the maximum shear stress plane. In case of the lamellar microstructure, when the strain rates increase from 4000 s −1 to 6000 s −1, the adiabatic shear bands go through the transition from self-organization to branching off and interconnecting into a net-like structure. At strain rate of 10 4 s −1 by Taylor impact, the regularly spaced adiabatic shearing cracks cause that the fracture surface makes an angle of 45° with the impacted end of the projectile in bimodal microstructure. The net-like adiabatic shearing cracks in lamellar microstructure result in the fragmentation of the projectile head, the angle is about 0°.</description><subject>Adiabatic shear band</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Fracture</subject><subject>Fractures</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Strain rate</subject><subject>Ti–6Al–4V</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQhy0EEqXwAkxeYEs426mTSCwI8adSJZbCap0dh7pKk2InlbrxDrwhT4KjIkaWO5303Z1-HyGXDFIGTN6s002wmHKAIoUyhVwekQkrcpFkpZDHZAIlZ8kMSnFKzkJYAwDLYDYhet7WzWBbY2lX040zvgu9H0w_eEuxrWic0LXUYx-JlmLlUGPvDA0ri96171TbFe5c52nElu7780veNbFmbxSbptuHc3JSYxPsxW-fktfHh-X9c7J4eZrf3y0SIyTrE54JjRVnttBG6IIzbXg1MyLLTc5Fzmst8xzLQmvMtMgKjYLbivOZLDkgz8WUXB_ubn33MdjQq40LxjYNtrYbghISCmACIsgP4Bg2eFurrXcb9HvFQI061VqNOtWoU0Gpos64dPV7HYPBpvbYGhf-NjkDkFyIyN0eOBuj7pz1Khg3-q2ct6ZXVef-e_MDPMiNZA</recordid><startdate>20090215</startdate><enddate>20090215</enddate><creator>Liu, Xinqin</creator><creator>Tan, Chengwen</creator><creator>Zhang, Jing</creator><creator>Hu, Yangguang</creator><creator>Ma, Honglei</creator><creator>Wang, Fuchi</creator><creator>Cai, Hongnian</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090215</creationdate><title>Influence of microstructure and strain rate on adiabatic shearing behavior in Ti–6Al–4V alloys</title><author>Liu, Xinqin ; Tan, Chengwen ; Zhang, Jing ; Hu, Yangguang ; Ma, Honglei ; Wang, Fuchi ; Cai, Hongnian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-243bad21e8bc3b821bc2d5c347c72372fb677a98bba4b348ba32ed2256920a273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adiabatic shear band</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Fracture</topic><topic>Fractures</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Strain rate</topic><topic>Ti–6Al–4V</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xinqin</creatorcontrib><creatorcontrib>Tan, Chengwen</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Hu, Yangguang</creatorcontrib><creatorcontrib>Ma, Honglei</creatorcontrib><creatorcontrib>Wang, Fuchi</creatorcontrib><creatorcontrib>Cai, Hongnian</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xinqin</au><au>Tan, Chengwen</au><au>Zhang, Jing</au><au>Hu, Yangguang</au><au>Ma, Honglei</au><au>Wang, Fuchi</au><au>Cai, Hongnian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of microstructure and strain rate on adiabatic shearing behavior in Ti–6Al–4V alloys</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2009-02-15</date><risdate>2009</risdate><volume>501</volume><issue>1</issue><spage>30</spage><epage>36</epage><pages>30-36</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Adiabatic shearing behavior of Ti–6Al–4V alloys with bimodal and lamellar microstructures is investigated at strain rates ranging from 10 3 s −1 to 10 4 s −1 by Spilt Hopkinson Pressure Bar and Taylor impact. The characteristic of fracture is closely related with the behavior of adiabatic shear band in Ti–6Al–4V alloys. In bimodal microstructure at strain rate of 10 3 s −1, the adiabatic shear bands are regularly spaced and orientated along the maximum shear stress plane. In case of the lamellar microstructure, when the strain rates increase from 4000 s −1 to 6000 s −1, the adiabatic shear bands go through the transition from self-organization to branching off and interconnecting into a net-like structure. At strain rate of 10 4 s −1 by Taylor impact, the regularly spaced adiabatic shearing cracks cause that the fracture surface makes an angle of 45° with the impacted end of the projectile in bimodal microstructure. The net-like adiabatic shearing cracks in lamellar microstructure result in the fragmentation of the projectile head, the angle is about 0°.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2008.09.076</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2009-02, Vol.501 (1), p.30-36
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_36080130
source Elsevier ScienceDirect Journals
subjects Adiabatic shear band
Applied sciences
Exact sciences and technology
Fracture
Fractures
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Microstructure
Strain rate
Ti–6Al–4V
title Influence of microstructure and strain rate on adiabatic shearing behavior in Ti–6Al–4V alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A32%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20microstructure%20and%20strain%20rate%20on%20adiabatic%20shearing%20behavior%20in%20Ti%E2%80%936Al%E2%80%934V%20alloys&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Liu,%20Xinqin&rft.date=2009-02-15&rft.volume=501&rft.issue=1&rft.spage=30&rft.epage=36&rft.pages=30-36&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2008.09.076&rft_dat=%3Cproquest_cross%3E36080130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36080130&rft_id=info:pmid/&rft_els_id=S0921509308011271&rfr_iscdi=true