Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model
While cellular automata (CA) models have been increasingly used over the last decades to simulate a wide range of spatial phenomena, recent studies have illustrated that they are sensitive to cell size and neighborhood configuration. In this paper, a new vector-based cellular automata (VecGCA) model...
Gespeichert in:
Veröffentlicht in: | Computers, environment and urban systems environment and urban systems, 2009, Vol.33 (1), p.44-54 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | 1 |
container_start_page | 44 |
container_title | Computers, environment and urban systems |
container_volume | 33 |
creator | Moreno, Niandry Wang, Fang Marceau, Danielle J. |
description | While cellular automata (CA) models have been increasingly used over the last decades to simulate a wide range of spatial phenomena, recent studies have illustrated that they are sensitive to cell size and neighborhood configuration. In this paper, a new vector-based cellular automata (VecGCA) model is described to overcome the scale sensitivity of the raster-based CA models. VecGCA represents space as a collection of geographic objects of irregular shape and size corresponding to real-world entities. The neighborhood includes the whole geographic space; it is dynamic and specific to each geographic object. Two objects are neighbors if they are separated by objects whose states favor the land-use transition between them. The shape and area of the geographic objects change through time according to a transition function that incorporates the influence of the neighbors on the specific geographic object. The model was used to simulate land-use/land cover changes in two regions of different landscape complexity, in Quebec and Alberta, Canada. The results revealed that VecGCA produces realistic spatial patterns similar to reference land-use maps. The space definition removes the dependency of the model to cell size while the dynamic neighborhood removes the rigid, arbitrarily defined zone of influence around each geographic object. |
doi_str_mv | 10.1016/j.compenvurbsys.2008.09.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36031341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0198971508000690</els_id><sourcerecordid>14021418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-39f040a598c50b13540c1437f45fb496d527351aeaa15454a01360cbf44ea4e03</originalsourceid><addsrcrecordid>eNqNkUFr3DAQhU1poNsk_0FQ2pudGUta2_RUQtoGAr20pxzEWB43WmxpK9kL---rZUOhp-T0DvPNe8O8oviAUCHg9mZX2TDv2R_W2KdjqmqAtoKuyvKm2GDbyLLRbfO22AB2bdk1qN8V71PaAUCtVLspHu_n_cQz-4UWF7wIoyAxHD3NzgrP7vdTH-JTCINwPk8m8kO5JhYHtkuIZU-JB2F5mtaJoqB1CTMtJOYw8HRVXIw0Jb5-1svi19e7n7ffy4cf3-5vvzyUVklcStmNoIB011oNPUqtwKKSzaj02KtuO-i6kRqJiVArrQhQbsH2o1JMikFeFp_OvvsY_qycFjO7dLqJPIc1mUxLlApfBGuoG50zXgRRQY0K2wx-PoM2hpQij2Yf3UzxaBDMqSKzM_9VZE4VGehMlrz98TmGkqVpjOStS_8saoROqq7J3N2Z4_zFg-NoknXsLQ8u5h7MENyr8v4CB9ivWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14021418</pqid></control><display><type>article</type><title>Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model</title><source>Elsevier ScienceDirect Journals</source><creator>Moreno, Niandry ; Wang, Fang ; Marceau, Danielle J.</creator><creatorcontrib>Moreno, Niandry ; Wang, Fang ; Marceau, Danielle J.</creatorcontrib><description>While cellular automata (CA) models have been increasingly used over the last decades to simulate a wide range of spatial phenomena, recent studies have illustrated that they are sensitive to cell size and neighborhood configuration. In this paper, a new vector-based cellular automata (VecGCA) model is described to overcome the scale sensitivity of the raster-based CA models. VecGCA represents space as a collection of geographic objects of irregular shape and size corresponding to real-world entities. The neighborhood includes the whole geographic space; it is dynamic and specific to each geographic object. Two objects are neighbors if they are separated by objects whose states favor the land-use transition between them. The shape and area of the geographic objects change through time according to a transition function that incorporates the influence of the neighbors on the specific geographic object. The model was used to simulate land-use/land cover changes in two regions of different landscape complexity, in Quebec and Alberta, Canada. The results revealed that VecGCA produces realistic spatial patterns similar to reference land-use maps. The space definition removes the dependency of the model to cell size while the dynamic neighborhood removes the rigid, arbitrarily defined zone of influence around each geographic object.</description><identifier>ISSN: 0198-9715</identifier><identifier>EISSN: 1873-7587</identifier><identifier>DOI: 10.1016/j.compenvurbsys.2008.09.008</identifier><identifier>CODEN: CEUSD5</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alberta ; Applied sciences ; Buildings. Public works ; Cellular automata ; Collection ; Complexity ; Computation methods. Tables. Charts ; Computer simulation ; Dynamic neighborhood ; Dynamics ; Exact sciences and technology ; Land cover ; Land use ; Land-use/land-cover changes ; Landscapes ; Mathematical models ; Structural analysis. Stresses ; Urban development ; Vector-based cellular automata</subject><ispartof>Computers, environment and urban systems, 2009, Vol.33 (1), p.44-54</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-39f040a598c50b13540c1437f45fb496d527351aeaa15454a01360cbf44ea4e03</citedby><cites>FETCH-LOGICAL-c431t-39f040a598c50b13540c1437f45fb496d527351aeaa15454a01360cbf44ea4e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compenvurbsys.2008.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,4010,27904,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21093497$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moreno, Niandry</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Marceau, Danielle J.</creatorcontrib><title>Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model</title><title>Computers, environment and urban systems</title><description>While cellular automata (CA) models have been increasingly used over the last decades to simulate a wide range of spatial phenomena, recent studies have illustrated that they are sensitive to cell size and neighborhood configuration. In this paper, a new vector-based cellular automata (VecGCA) model is described to overcome the scale sensitivity of the raster-based CA models. VecGCA represents space as a collection of geographic objects of irregular shape and size corresponding to real-world entities. The neighborhood includes the whole geographic space; it is dynamic and specific to each geographic object. Two objects are neighbors if they are separated by objects whose states favor the land-use transition between them. The shape and area of the geographic objects change through time according to a transition function that incorporates the influence of the neighbors on the specific geographic object. The model was used to simulate land-use/land cover changes in two regions of different landscape complexity, in Quebec and Alberta, Canada. The results revealed that VecGCA produces realistic spatial patterns similar to reference land-use maps. The space definition removes the dependency of the model to cell size while the dynamic neighborhood removes the rigid, arbitrarily defined zone of influence around each geographic object.</description><subject>Alberta</subject><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Cellular automata</subject><subject>Collection</subject><subject>Complexity</subject><subject>Computation methods. Tables. Charts</subject><subject>Computer simulation</subject><subject>Dynamic neighborhood</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Land cover</subject><subject>Land use</subject><subject>Land-use/land-cover changes</subject><subject>Landscapes</subject><subject>Mathematical models</subject><subject>Structural analysis. Stresses</subject><subject>Urban development</subject><subject>Vector-based cellular automata</subject><issn>0198-9715</issn><issn>1873-7587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkUFr3DAQhU1poNsk_0FQ2pudGUta2_RUQtoGAr20pxzEWB43WmxpK9kL---rZUOhp-T0DvPNe8O8oviAUCHg9mZX2TDv2R_W2KdjqmqAtoKuyvKm2GDbyLLRbfO22AB2bdk1qN8V71PaAUCtVLspHu_n_cQz-4UWF7wIoyAxHD3NzgrP7vdTH-JTCINwPk8m8kO5JhYHtkuIZU-JB2F5mtaJoqB1CTMtJOYw8HRVXIw0Jb5-1svi19e7n7ffy4cf3-5vvzyUVklcStmNoIB011oNPUqtwKKSzaj02KtuO-i6kRqJiVArrQhQbsH2o1JMikFeFp_OvvsY_qycFjO7dLqJPIc1mUxLlApfBGuoG50zXgRRQY0K2wx-PoM2hpQij2Yf3UzxaBDMqSKzM_9VZE4VGehMlrz98TmGkqVpjOStS_8saoROqq7J3N2Z4_zFg-NoknXsLQ8u5h7MENyr8v4CB9ivWA</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Moreno, Niandry</creator><creator>Wang, Fang</creator><creator>Marceau, Danielle J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7U6</scope><scope>7SC</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2009</creationdate><title>Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model</title><author>Moreno, Niandry ; Wang, Fang ; Marceau, Danielle J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-39f040a598c50b13540c1437f45fb496d527351aeaa15454a01360cbf44ea4e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alberta</topic><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Cellular automata</topic><topic>Collection</topic><topic>Complexity</topic><topic>Computation methods. Tables. Charts</topic><topic>Computer simulation</topic><topic>Dynamic neighborhood</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Land cover</topic><topic>Land use</topic><topic>Land-use/land-cover changes</topic><topic>Landscapes</topic><topic>Mathematical models</topic><topic>Structural analysis. Stresses</topic><topic>Urban development</topic><topic>Vector-based cellular automata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreno, Niandry</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Marceau, Danielle J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers, environment and urban systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreno, Niandry</au><au>Wang, Fang</au><au>Marceau, Danielle J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model</atitle><jtitle>Computers, environment and urban systems</jtitle><date>2009</date><risdate>2009</risdate><volume>33</volume><issue>1</issue><spage>44</spage><epage>54</epage><pages>44-54</pages><issn>0198-9715</issn><eissn>1873-7587</eissn><coden>CEUSD5</coden><abstract>While cellular automata (CA) models have been increasingly used over the last decades to simulate a wide range of spatial phenomena, recent studies have illustrated that they are sensitive to cell size and neighborhood configuration. In this paper, a new vector-based cellular automata (VecGCA) model is described to overcome the scale sensitivity of the raster-based CA models. VecGCA represents space as a collection of geographic objects of irregular shape and size corresponding to real-world entities. The neighborhood includes the whole geographic space; it is dynamic and specific to each geographic object. Two objects are neighbors if they are separated by objects whose states favor the land-use transition between them. The shape and area of the geographic objects change through time according to a transition function that incorporates the influence of the neighbors on the specific geographic object. The model was used to simulate land-use/land cover changes in two regions of different landscape complexity, in Quebec and Alberta, Canada. The results revealed that VecGCA produces realistic spatial patterns similar to reference land-use maps. The space definition removes the dependency of the model to cell size while the dynamic neighborhood removes the rigid, arbitrarily defined zone of influence around each geographic object.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compenvurbsys.2008.09.008</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0198-9715 |
ispartof | Computers, environment and urban systems, 2009, Vol.33 (1), p.44-54 |
issn | 0198-9715 1873-7587 |
language | eng |
recordid | cdi_proquest_miscellaneous_36031341 |
source | Elsevier ScienceDirect Journals |
subjects | Alberta Applied sciences Buildings. Public works Cellular automata Collection Complexity Computation methods. Tables. Charts Computer simulation Dynamic neighborhood Dynamics Exact sciences and technology Land cover Land use Land-use/land-cover changes Landscapes Mathematical models Structural analysis. Stresses Urban development Vector-based cellular automata |
title | Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20a%20dynamic%20neighborhood%20in%20a%20land-use%20vector-based%20cellular%20automata%20model&rft.jtitle=Computers,%20environment%20and%20urban%20systems&rft.au=Moreno,%20Niandry&rft.date=2009&rft.volume=33&rft.issue=1&rft.spage=44&rft.epage=54&rft.pages=44-54&rft.issn=0198-9715&rft.eissn=1873-7587&rft.coden=CEUSD5&rft_id=info:doi/10.1016/j.compenvurbsys.2008.09.008&rft_dat=%3Cproquest_cross%3E14021418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14021418&rft_id=info:pmid/&rft_els_id=S0198971508000690&rfr_iscdi=true |