Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model

While cellular automata (CA) models have been increasingly used over the last decades to simulate a wide range of spatial phenomena, recent studies have illustrated that they are sensitive to cell size and neighborhood configuration. In this paper, a new vector-based cellular automata (VecGCA) model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, environment and urban systems environment and urban systems, 2009, Vol.33 (1), p.44-54
Hauptverfasser: Moreno, Niandry, Wang, Fang, Marceau, Danielle J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue 1
container_start_page 44
container_title Computers, environment and urban systems
container_volume 33
creator Moreno, Niandry
Wang, Fang
Marceau, Danielle J.
description While cellular automata (CA) models have been increasingly used over the last decades to simulate a wide range of spatial phenomena, recent studies have illustrated that they are sensitive to cell size and neighborhood configuration. In this paper, a new vector-based cellular automata (VecGCA) model is described to overcome the scale sensitivity of the raster-based CA models. VecGCA represents space as a collection of geographic objects of irregular shape and size corresponding to real-world entities. The neighborhood includes the whole geographic space; it is dynamic and specific to each geographic object. Two objects are neighbors if they are separated by objects whose states favor the land-use transition between them. The shape and area of the geographic objects change through time according to a transition function that incorporates the influence of the neighbors on the specific geographic object. The model was used to simulate land-use/land cover changes in two regions of different landscape complexity, in Quebec and Alberta, Canada. The results revealed that VecGCA produces realistic spatial patterns similar to reference land-use maps. The space definition removes the dependency of the model to cell size while the dynamic neighborhood removes the rigid, arbitrarily defined zone of influence around each geographic object.
doi_str_mv 10.1016/j.compenvurbsys.2008.09.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36031341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0198971508000690</els_id><sourcerecordid>14021418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-39f040a598c50b13540c1437f45fb496d527351aeaa15454a01360cbf44ea4e03</originalsourceid><addsrcrecordid>eNqNkUFr3DAQhU1poNsk_0FQ2pudGUta2_RUQtoGAr20pxzEWB43WmxpK9kL---rZUOhp-T0DvPNe8O8oviAUCHg9mZX2TDv2R_W2KdjqmqAtoKuyvKm2GDbyLLRbfO22AB2bdk1qN8V71PaAUCtVLspHu_n_cQz-4UWF7wIoyAxHD3NzgrP7vdTH-JTCINwPk8m8kO5JhYHtkuIZU-JB2F5mtaJoqB1CTMtJOYw8HRVXIw0Jb5-1svi19e7n7ffy4cf3-5vvzyUVklcStmNoIB011oNPUqtwKKSzaj02KtuO-i6kRqJiVArrQhQbsH2o1JMikFeFp_OvvsY_qycFjO7dLqJPIc1mUxLlApfBGuoG50zXgRRQY0K2wx-PoM2hpQij2Yf3UzxaBDMqSKzM_9VZE4VGehMlrz98TmGkqVpjOStS_8saoROqq7J3N2Z4_zFg-NoknXsLQ8u5h7MENyr8v4CB9ivWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14021418</pqid></control><display><type>article</type><title>Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model</title><source>Elsevier ScienceDirect Journals</source><creator>Moreno, Niandry ; Wang, Fang ; Marceau, Danielle J.</creator><creatorcontrib>Moreno, Niandry ; Wang, Fang ; Marceau, Danielle J.</creatorcontrib><description>While cellular automata (CA) models have been increasingly used over the last decades to simulate a wide range of spatial phenomena, recent studies have illustrated that they are sensitive to cell size and neighborhood configuration. In this paper, a new vector-based cellular automata (VecGCA) model is described to overcome the scale sensitivity of the raster-based CA models. VecGCA represents space as a collection of geographic objects of irregular shape and size corresponding to real-world entities. The neighborhood includes the whole geographic space; it is dynamic and specific to each geographic object. Two objects are neighbors if they are separated by objects whose states favor the land-use transition between them. The shape and area of the geographic objects change through time according to a transition function that incorporates the influence of the neighbors on the specific geographic object. The model was used to simulate land-use/land cover changes in two regions of different landscape complexity, in Quebec and Alberta, Canada. The results revealed that VecGCA produces realistic spatial patterns similar to reference land-use maps. The space definition removes the dependency of the model to cell size while the dynamic neighborhood removes the rigid, arbitrarily defined zone of influence around each geographic object.</description><identifier>ISSN: 0198-9715</identifier><identifier>EISSN: 1873-7587</identifier><identifier>DOI: 10.1016/j.compenvurbsys.2008.09.008</identifier><identifier>CODEN: CEUSD5</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alberta ; Applied sciences ; Buildings. Public works ; Cellular automata ; Collection ; Complexity ; Computation methods. Tables. Charts ; Computer simulation ; Dynamic neighborhood ; Dynamics ; Exact sciences and technology ; Land cover ; Land use ; Land-use/land-cover changes ; Landscapes ; Mathematical models ; Structural analysis. Stresses ; Urban development ; Vector-based cellular automata</subject><ispartof>Computers, environment and urban systems, 2009, Vol.33 (1), p.44-54</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-39f040a598c50b13540c1437f45fb496d527351aeaa15454a01360cbf44ea4e03</citedby><cites>FETCH-LOGICAL-c431t-39f040a598c50b13540c1437f45fb496d527351aeaa15454a01360cbf44ea4e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compenvurbsys.2008.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,4010,27904,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21093497$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moreno, Niandry</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Marceau, Danielle J.</creatorcontrib><title>Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model</title><title>Computers, environment and urban systems</title><description>While cellular automata (CA) models have been increasingly used over the last decades to simulate a wide range of spatial phenomena, recent studies have illustrated that they are sensitive to cell size and neighborhood configuration. In this paper, a new vector-based cellular automata (VecGCA) model is described to overcome the scale sensitivity of the raster-based CA models. VecGCA represents space as a collection of geographic objects of irregular shape and size corresponding to real-world entities. The neighborhood includes the whole geographic space; it is dynamic and specific to each geographic object. Two objects are neighbors if they are separated by objects whose states favor the land-use transition between them. The shape and area of the geographic objects change through time according to a transition function that incorporates the influence of the neighbors on the specific geographic object. The model was used to simulate land-use/land cover changes in two regions of different landscape complexity, in Quebec and Alberta, Canada. The results revealed that VecGCA produces realistic spatial patterns similar to reference land-use maps. The space definition removes the dependency of the model to cell size while the dynamic neighborhood removes the rigid, arbitrarily defined zone of influence around each geographic object.</description><subject>Alberta</subject><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Cellular automata</subject><subject>Collection</subject><subject>Complexity</subject><subject>Computation methods. Tables. Charts</subject><subject>Computer simulation</subject><subject>Dynamic neighborhood</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Land cover</subject><subject>Land use</subject><subject>Land-use/land-cover changes</subject><subject>Landscapes</subject><subject>Mathematical models</subject><subject>Structural analysis. Stresses</subject><subject>Urban development</subject><subject>Vector-based cellular automata</subject><issn>0198-9715</issn><issn>1873-7587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkUFr3DAQhU1poNsk_0FQ2pudGUta2_RUQtoGAr20pxzEWB43WmxpK9kL---rZUOhp-T0DvPNe8O8oviAUCHg9mZX2TDv2R_W2KdjqmqAtoKuyvKm2GDbyLLRbfO22AB2bdk1qN8V71PaAUCtVLspHu_n_cQz-4UWF7wIoyAxHD3NzgrP7vdTH-JTCINwPk8m8kO5JhYHtkuIZU-JB2F5mtaJoqB1CTMtJOYw8HRVXIw0Jb5-1svi19e7n7ffy4cf3-5vvzyUVklcStmNoIB011oNPUqtwKKSzaj02KtuO-i6kRqJiVArrQhQbsH2o1JMikFeFp_OvvsY_qycFjO7dLqJPIc1mUxLlApfBGuoG50zXgRRQY0K2wx-PoM2hpQij2Yf3UzxaBDMqSKzM_9VZE4VGehMlrz98TmGkqVpjOStS_8saoROqq7J3N2Z4_zFg-NoknXsLQ8u5h7MENyr8v4CB9ivWA</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Moreno, Niandry</creator><creator>Wang, Fang</creator><creator>Marceau, Danielle J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7U6</scope><scope>7SC</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2009</creationdate><title>Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model</title><author>Moreno, Niandry ; Wang, Fang ; Marceau, Danielle J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-39f040a598c50b13540c1437f45fb496d527351aeaa15454a01360cbf44ea4e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alberta</topic><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Cellular automata</topic><topic>Collection</topic><topic>Complexity</topic><topic>Computation methods. Tables. Charts</topic><topic>Computer simulation</topic><topic>Dynamic neighborhood</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Land cover</topic><topic>Land use</topic><topic>Land-use/land-cover changes</topic><topic>Landscapes</topic><topic>Mathematical models</topic><topic>Structural analysis. Stresses</topic><topic>Urban development</topic><topic>Vector-based cellular automata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreno, Niandry</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Marceau, Danielle J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers, environment and urban systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreno, Niandry</au><au>Wang, Fang</au><au>Marceau, Danielle J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model</atitle><jtitle>Computers, environment and urban systems</jtitle><date>2009</date><risdate>2009</risdate><volume>33</volume><issue>1</issue><spage>44</spage><epage>54</epage><pages>44-54</pages><issn>0198-9715</issn><eissn>1873-7587</eissn><coden>CEUSD5</coden><abstract>While cellular automata (CA) models have been increasingly used over the last decades to simulate a wide range of spatial phenomena, recent studies have illustrated that they are sensitive to cell size and neighborhood configuration. In this paper, a new vector-based cellular automata (VecGCA) model is described to overcome the scale sensitivity of the raster-based CA models. VecGCA represents space as a collection of geographic objects of irregular shape and size corresponding to real-world entities. The neighborhood includes the whole geographic space; it is dynamic and specific to each geographic object. Two objects are neighbors if they are separated by objects whose states favor the land-use transition between them. The shape and area of the geographic objects change through time according to a transition function that incorporates the influence of the neighbors on the specific geographic object. The model was used to simulate land-use/land cover changes in two regions of different landscape complexity, in Quebec and Alberta, Canada. The results revealed that VecGCA produces realistic spatial patterns similar to reference land-use maps. The space definition removes the dependency of the model to cell size while the dynamic neighborhood removes the rigid, arbitrarily defined zone of influence around each geographic object.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compenvurbsys.2008.09.008</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0198-9715
ispartof Computers, environment and urban systems, 2009, Vol.33 (1), p.44-54
issn 0198-9715
1873-7587
language eng
recordid cdi_proquest_miscellaneous_36031341
source Elsevier ScienceDirect Journals
subjects Alberta
Applied sciences
Buildings. Public works
Cellular automata
Collection
Complexity
Computation methods. Tables. Charts
Computer simulation
Dynamic neighborhood
Dynamics
Exact sciences and technology
Land cover
Land use
Land-use/land-cover changes
Landscapes
Mathematical models
Structural analysis. Stresses
Urban development
Vector-based cellular automata
title Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20a%20dynamic%20neighborhood%20in%20a%20land-use%20vector-based%20cellular%20automata%20model&rft.jtitle=Computers,%20environment%20and%20urban%20systems&rft.au=Moreno,%20Niandry&rft.date=2009&rft.volume=33&rft.issue=1&rft.spage=44&rft.epage=54&rft.pages=44-54&rft.issn=0198-9715&rft.eissn=1873-7587&rft.coden=CEUSD5&rft_id=info:doi/10.1016/j.compenvurbsys.2008.09.008&rft_dat=%3Cproquest_cross%3E14021418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14021418&rft_id=info:pmid/&rft_els_id=S0198971508000690&rfr_iscdi=true