Modeling of Intelligent Material Systems by the MLPG
A meshless method based on the local Petrov-Galerkin approach is proposed, to solve boundary and initial value problems of piezoelectric and magneto-electric-elastic solids with continuously varying material properties. Stationary and transient dynamic 2-D problems are considered in this paper. The...
Gespeichert in:
Veröffentlicht in: | Computer modeling in engineering & sciences 2008, Vol.34 (3), p.273-300 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 300 |
---|---|
container_issue | 3 |
container_start_page | 273 |
container_title | Computer modeling in engineering & sciences |
container_volume | 34 |
creator | Sladek, J Sladek, V Solek, P Atluri, S N |
description | A meshless method based on the local Petrov-Galerkin approach is proposed, to solve boundary and initial value problems of piezoelectric and magneto-electric-elastic solids with continuously varying material properties. Stationary and transient dynamic 2-D problems are considered in this paper. The mechanical fields are described by the equations of motion with an inertial term. To eliminate the time-dependence in the governing partial differential equations the Laplace-transform technique is applied to the governing equations, which are satisfied in the Laplace-transformed domain in a weak-form on small subdomains. Nodal points are spread on the analyzed domain, and each node is surrounded by a small circle for simplicity. The spatial variation of the displacements and the electric potential are approximated by the Moving Least-Squares (MLS) scheme. After performing the spatial integrations, one obtains a system of linear algebraic equations for unknown nodal values. The boundary conditions on the global boundary are satisfied by the collocation of the MLS-approximation expressions for the displacements and the electric potential at the boundary nodal points. The Stehfest's inversion method is applied to obtain the final time-dependent solutions. |
doi_str_mv | 10.3970/cmes.2008.034.273 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_36007112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397457420</sourcerecordid><originalsourceid>FETCH-LOGICAL-p214t-452da239aaf2a036b6b27da39361290231bc72375c7037505bede8db6d535c923</originalsourceid><addsrcrecordid>eNpdjk1LAzEYhIMoWKs_wFtA8Lbrm_fNx-YoRWuhRUE9l-wmrVv2o27SQ_-9K-rFy8wcHmaGsWsBOVkDd1UbYo4ARQ4kczR0wiZCoc6EAn36l6XFc3YR4w6ANBV2wuSq96Gpuy3vN3zRpdA09TZ0ia9cCkPtGv56jCm0kZdHnj4CXy1f5pfsbOOaGK5-fcreHx_eZk_Z8nm-mN0vsz0KmTKp0Dsk69wG3ThY6hKNd2RJC7SAJMrKIBlVGRgVVBl8KHypvSJVWaQpu_3p3Q_95yHEtG7rWI0XXRf6Q1yTBjBCfIM3_8Bdfxi68dt63DdSGYlAX4YtU24</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397457420</pqid></control><display><type>article</type><title>Modeling of Intelligent Material Systems by the MLPG</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Tech Science Press</source><creator>Sladek, J ; Sladek, V ; Solek, P ; Atluri, S N</creator><creatorcontrib>Sladek, J ; Sladek, V ; Solek, P ; Atluri, S N</creatorcontrib><description>A meshless method based on the local Petrov-Galerkin approach is proposed, to solve boundary and initial value problems of piezoelectric and magneto-electric-elastic solids with continuously varying material properties. Stationary and transient dynamic 2-D problems are considered in this paper. The mechanical fields are described by the equations of motion with an inertial term. To eliminate the time-dependence in the governing partial differential equations the Laplace-transform technique is applied to the governing equations, which are satisfied in the Laplace-transformed domain in a weak-form on small subdomains. Nodal points are spread on the analyzed domain, and each node is surrounded by a small circle for simplicity. The spatial variation of the displacements and the electric potential are approximated by the Moving Least-Squares (MLS) scheme. After performing the spatial integrations, one obtains a system of linear algebraic equations for unknown nodal values. The boundary conditions on the global boundary are satisfied by the collocation of the MLS-approximation expressions for the displacements and the electric potential at the boundary nodal points. The Stehfest's inversion method is applied to obtain the final time-dependent solutions.</description><identifier>ISSN: 1526-1492</identifier><identifier>EISSN: 1526-1506</identifier><identifier>DOI: 10.3970/cmes.2008.034.273</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Boundary conditions ; Boundary value problems ; Domains ; Electric potential ; Equations of motion ; Finite element method ; Galerkin method ; Linear algebra ; Magnetic properties ; Material properties ; Meshless methods ; Partial differential equations ; Piezoelectricity ; Time dependence</subject><ispartof>Computer modeling in engineering & sciences, 2008, Vol.34 (3), p.273-300</ispartof><rights>2008. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Sladek, J</creatorcontrib><creatorcontrib>Sladek, V</creatorcontrib><creatorcontrib>Solek, P</creatorcontrib><creatorcontrib>Atluri, S N</creatorcontrib><title>Modeling of Intelligent Material Systems by the MLPG</title><title>Computer modeling in engineering & sciences</title><description>A meshless method based on the local Petrov-Galerkin approach is proposed, to solve boundary and initial value problems of piezoelectric and magneto-electric-elastic solids with continuously varying material properties. Stationary and transient dynamic 2-D problems are considered in this paper. The mechanical fields are described by the equations of motion with an inertial term. To eliminate the time-dependence in the governing partial differential equations the Laplace-transform technique is applied to the governing equations, which are satisfied in the Laplace-transformed domain in a weak-form on small subdomains. Nodal points are spread on the analyzed domain, and each node is surrounded by a small circle for simplicity. The spatial variation of the displacements and the electric potential are approximated by the Moving Least-Squares (MLS) scheme. After performing the spatial integrations, one obtains a system of linear algebraic equations for unknown nodal values. The boundary conditions on the global boundary are satisfied by the collocation of the MLS-approximation expressions for the displacements and the electric potential at the boundary nodal points. The Stehfest's inversion method is applied to obtain the final time-dependent solutions.</description><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Domains</subject><subject>Electric potential</subject><subject>Equations of motion</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>Linear algebra</subject><subject>Magnetic properties</subject><subject>Material properties</subject><subject>Meshless methods</subject><subject>Partial differential equations</subject><subject>Piezoelectricity</subject><subject>Time dependence</subject><issn>1526-1492</issn><issn>1526-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdjk1LAzEYhIMoWKs_wFtA8Lbrm_fNx-YoRWuhRUE9l-wmrVv2o27SQ_-9K-rFy8wcHmaGsWsBOVkDd1UbYo4ARQ4kczR0wiZCoc6EAn36l6XFc3YR4w6ANBV2wuSq96Gpuy3vN3zRpdA09TZ0ia9cCkPtGv56jCm0kZdHnj4CXy1f5pfsbOOaGK5-fcreHx_eZk_Z8nm-mN0vsz0KmTKp0Dsk69wG3ThY6hKNd2RJC7SAJMrKIBlVGRgVVBl8KHypvSJVWaQpu_3p3Q_95yHEtG7rWI0XXRf6Q1yTBjBCfIM3_8Bdfxi68dt63DdSGYlAX4YtU24</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Sladek, J</creator><creator>Sladek, V</creator><creator>Solek, P</creator><creator>Atluri, S N</creator><general>Tech Science Press</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2008</creationdate><title>Modeling of Intelligent Material Systems by the MLPG</title><author>Sladek, J ; Sladek, V ; Solek, P ; Atluri, S N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p214t-452da239aaf2a036b6b27da39361290231bc72375c7037505bede8db6d535c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Domains</topic><topic>Electric potential</topic><topic>Equations of motion</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>Linear algebra</topic><topic>Magnetic properties</topic><topic>Material properties</topic><topic>Meshless methods</topic><topic>Partial differential equations</topic><topic>Piezoelectricity</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Sladek, J</creatorcontrib><creatorcontrib>Sladek, V</creatorcontrib><creatorcontrib>Solek, P</creatorcontrib><creatorcontrib>Atluri, S N</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computer modeling in engineering & sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sladek, J</au><au>Sladek, V</au><au>Solek, P</au><au>Atluri, S N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Intelligent Material Systems by the MLPG</atitle><jtitle>Computer modeling in engineering & sciences</jtitle><date>2008</date><risdate>2008</risdate><volume>34</volume><issue>3</issue><spage>273</spage><epage>300</epage><pages>273-300</pages><issn>1526-1492</issn><eissn>1526-1506</eissn><abstract>A meshless method based on the local Petrov-Galerkin approach is proposed, to solve boundary and initial value problems of piezoelectric and magneto-electric-elastic solids with continuously varying material properties. Stationary and transient dynamic 2-D problems are considered in this paper. The mechanical fields are described by the equations of motion with an inertial term. To eliminate the time-dependence in the governing partial differential equations the Laplace-transform technique is applied to the governing equations, which are satisfied in the Laplace-transformed domain in a weak-form on small subdomains. Nodal points are spread on the analyzed domain, and each node is surrounded by a small circle for simplicity. The spatial variation of the displacements and the electric potential are approximated by the Moving Least-Squares (MLS) scheme. After performing the spatial integrations, one obtains a system of linear algebraic equations for unknown nodal values. The boundary conditions on the global boundary are satisfied by the collocation of the MLS-approximation expressions for the displacements and the electric potential at the boundary nodal points. The Stehfest's inversion method is applied to obtain the final time-dependent solutions.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.3970/cmes.2008.034.273</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1526-1492 |
ispartof | Computer modeling in engineering & sciences, 2008, Vol.34 (3), p.273-300 |
issn | 1526-1492 1526-1506 |
language | eng |
recordid | cdi_proquest_miscellaneous_36007112 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Tech Science Press |
subjects | Boundary conditions Boundary value problems Domains Electric potential Equations of motion Finite element method Galerkin method Linear algebra Magnetic properties Material properties Meshless methods Partial differential equations Piezoelectricity Time dependence |
title | Modeling of Intelligent Material Systems by the MLPG |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Intelligent%20Material%20Systems%20by%20the%20MLPG&rft.jtitle=Computer%20modeling%20in%20engineering%20&%20sciences&rft.au=Sladek,%20J&rft.date=2008&rft.volume=34&rft.issue=3&rft.spage=273&rft.epage=300&rft.pages=273-300&rft.issn=1526-1492&rft.eissn=1526-1506&rft_id=info:doi/10.3970/cmes.2008.034.273&rft_dat=%3Cproquest%3E2397457420%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397457420&rft_id=info:pmid/&rfr_iscdi=true |