Modeling of Intelligent Material Systems by the MLPG

A meshless method based on the local Petrov-Galerkin approach is proposed, to solve boundary and initial value problems of piezoelectric and magneto-electric-elastic solids with continuously varying material properties. Stationary and transient dynamic 2-D problems are considered in this paper. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer modeling in engineering & sciences 2008, Vol.34 (3), p.273-300
Hauptverfasser: Sladek, J, Sladek, V, Solek, P, Atluri, S N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 3
container_start_page 273
container_title Computer modeling in engineering & sciences
container_volume 34
creator Sladek, J
Sladek, V
Solek, P
Atluri, S N
description A meshless method based on the local Petrov-Galerkin approach is proposed, to solve boundary and initial value problems of piezoelectric and magneto-electric-elastic solids with continuously varying material properties. Stationary and transient dynamic 2-D problems are considered in this paper. The mechanical fields are described by the equations of motion with an inertial term. To eliminate the time-dependence in the governing partial differential equations the Laplace-transform technique is applied to the governing equations, which are satisfied in the Laplace-transformed domain in a weak-form on small subdomains. Nodal points are spread on the analyzed domain, and each node is surrounded by a small circle for simplicity. The spatial variation of the displacements and the electric potential are approximated by the Moving Least-Squares (MLS) scheme. After performing the spatial integrations, one obtains a system of linear algebraic equations for unknown nodal values. The boundary conditions on the global boundary are satisfied by the collocation of the MLS-approximation expressions for the displacements and the electric potential at the boundary nodal points. The Stehfest's inversion method is applied to obtain the final time-dependent solutions.
doi_str_mv 10.3970/cmes.2008.034.273
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_36007112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397457420</sourcerecordid><originalsourceid>FETCH-LOGICAL-p214t-452da239aaf2a036b6b27da39361290231bc72375c7037505bede8db6d535c923</originalsourceid><addsrcrecordid>eNpdjk1LAzEYhIMoWKs_wFtA8Lbrm_fNx-YoRWuhRUE9l-wmrVv2o27SQ_-9K-rFy8wcHmaGsWsBOVkDd1UbYo4ARQ4kczR0wiZCoc6EAn36l6XFc3YR4w6ANBV2wuSq96Gpuy3vN3zRpdA09TZ0ia9cCkPtGv56jCm0kZdHnj4CXy1f5pfsbOOaGK5-fcreHx_eZk_Z8nm-mN0vsz0KmTKp0Dsk69wG3ThY6hKNd2RJC7SAJMrKIBlVGRgVVBl8KHypvSJVWaQpu_3p3Q_95yHEtG7rWI0XXRf6Q1yTBjBCfIM3_8Bdfxi68dt63DdSGYlAX4YtU24</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397457420</pqid></control><display><type>article</type><title>Modeling of Intelligent Material Systems by the MLPG</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Tech Science Press</source><creator>Sladek, J ; Sladek, V ; Solek, P ; Atluri, S N</creator><creatorcontrib>Sladek, J ; Sladek, V ; Solek, P ; Atluri, S N</creatorcontrib><description>A meshless method based on the local Petrov-Galerkin approach is proposed, to solve boundary and initial value problems of piezoelectric and magneto-electric-elastic solids with continuously varying material properties. Stationary and transient dynamic 2-D problems are considered in this paper. The mechanical fields are described by the equations of motion with an inertial term. To eliminate the time-dependence in the governing partial differential equations the Laplace-transform technique is applied to the governing equations, which are satisfied in the Laplace-transformed domain in a weak-form on small subdomains. Nodal points are spread on the analyzed domain, and each node is surrounded by a small circle for simplicity. The spatial variation of the displacements and the electric potential are approximated by the Moving Least-Squares (MLS) scheme. After performing the spatial integrations, one obtains a system of linear algebraic equations for unknown nodal values. The boundary conditions on the global boundary are satisfied by the collocation of the MLS-approximation expressions for the displacements and the electric potential at the boundary nodal points. The Stehfest's inversion method is applied to obtain the final time-dependent solutions.</description><identifier>ISSN: 1526-1492</identifier><identifier>EISSN: 1526-1506</identifier><identifier>DOI: 10.3970/cmes.2008.034.273</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Boundary conditions ; Boundary value problems ; Domains ; Electric potential ; Equations of motion ; Finite element method ; Galerkin method ; Linear algebra ; Magnetic properties ; Material properties ; Meshless methods ; Partial differential equations ; Piezoelectricity ; Time dependence</subject><ispartof>Computer modeling in engineering &amp; sciences, 2008, Vol.34 (3), p.273-300</ispartof><rights>2008. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Sladek, J</creatorcontrib><creatorcontrib>Sladek, V</creatorcontrib><creatorcontrib>Solek, P</creatorcontrib><creatorcontrib>Atluri, S N</creatorcontrib><title>Modeling of Intelligent Material Systems by the MLPG</title><title>Computer modeling in engineering &amp; sciences</title><description>A meshless method based on the local Petrov-Galerkin approach is proposed, to solve boundary and initial value problems of piezoelectric and magneto-electric-elastic solids with continuously varying material properties. Stationary and transient dynamic 2-D problems are considered in this paper. The mechanical fields are described by the equations of motion with an inertial term. To eliminate the time-dependence in the governing partial differential equations the Laplace-transform technique is applied to the governing equations, which are satisfied in the Laplace-transformed domain in a weak-form on small subdomains. Nodal points are spread on the analyzed domain, and each node is surrounded by a small circle for simplicity. The spatial variation of the displacements and the electric potential are approximated by the Moving Least-Squares (MLS) scheme. After performing the spatial integrations, one obtains a system of linear algebraic equations for unknown nodal values. The boundary conditions on the global boundary are satisfied by the collocation of the MLS-approximation expressions for the displacements and the electric potential at the boundary nodal points. The Stehfest's inversion method is applied to obtain the final time-dependent solutions.</description><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Domains</subject><subject>Electric potential</subject><subject>Equations of motion</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>Linear algebra</subject><subject>Magnetic properties</subject><subject>Material properties</subject><subject>Meshless methods</subject><subject>Partial differential equations</subject><subject>Piezoelectricity</subject><subject>Time dependence</subject><issn>1526-1492</issn><issn>1526-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdjk1LAzEYhIMoWKs_wFtA8Lbrm_fNx-YoRWuhRUE9l-wmrVv2o27SQ_-9K-rFy8wcHmaGsWsBOVkDd1UbYo4ARQ4kczR0wiZCoc6EAn36l6XFc3YR4w6ANBV2wuSq96Gpuy3vN3zRpdA09TZ0ia9cCkPtGv56jCm0kZdHnj4CXy1f5pfsbOOaGK5-fcreHx_eZk_Z8nm-mN0vsz0KmTKp0Dsk69wG3ThY6hKNd2RJC7SAJMrKIBlVGRgVVBl8KHypvSJVWaQpu_3p3Q_95yHEtG7rWI0XXRf6Q1yTBjBCfIM3_8Bdfxi68dt63DdSGYlAX4YtU24</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Sladek, J</creator><creator>Sladek, V</creator><creator>Solek, P</creator><creator>Atluri, S N</creator><general>Tech Science Press</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2008</creationdate><title>Modeling of Intelligent Material Systems by the MLPG</title><author>Sladek, J ; Sladek, V ; Solek, P ; Atluri, S N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p214t-452da239aaf2a036b6b27da39361290231bc72375c7037505bede8db6d535c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Domains</topic><topic>Electric potential</topic><topic>Equations of motion</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>Linear algebra</topic><topic>Magnetic properties</topic><topic>Material properties</topic><topic>Meshless methods</topic><topic>Partial differential equations</topic><topic>Piezoelectricity</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Sladek, J</creatorcontrib><creatorcontrib>Sladek, V</creatorcontrib><creatorcontrib>Solek, P</creatorcontrib><creatorcontrib>Atluri, S N</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computer modeling in engineering &amp; sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sladek, J</au><au>Sladek, V</au><au>Solek, P</au><au>Atluri, S N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Intelligent Material Systems by the MLPG</atitle><jtitle>Computer modeling in engineering &amp; sciences</jtitle><date>2008</date><risdate>2008</risdate><volume>34</volume><issue>3</issue><spage>273</spage><epage>300</epage><pages>273-300</pages><issn>1526-1492</issn><eissn>1526-1506</eissn><abstract>A meshless method based on the local Petrov-Galerkin approach is proposed, to solve boundary and initial value problems of piezoelectric and magneto-electric-elastic solids with continuously varying material properties. Stationary and transient dynamic 2-D problems are considered in this paper. The mechanical fields are described by the equations of motion with an inertial term. To eliminate the time-dependence in the governing partial differential equations the Laplace-transform technique is applied to the governing equations, which are satisfied in the Laplace-transformed domain in a weak-form on small subdomains. Nodal points are spread on the analyzed domain, and each node is surrounded by a small circle for simplicity. The spatial variation of the displacements and the electric potential are approximated by the Moving Least-Squares (MLS) scheme. After performing the spatial integrations, one obtains a system of linear algebraic equations for unknown nodal values. The boundary conditions on the global boundary are satisfied by the collocation of the MLS-approximation expressions for the displacements and the electric potential at the boundary nodal points. The Stehfest's inversion method is applied to obtain the final time-dependent solutions.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.3970/cmes.2008.034.273</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1526-1492
ispartof Computer modeling in engineering & sciences, 2008, Vol.34 (3), p.273-300
issn 1526-1492
1526-1506
language eng
recordid cdi_proquest_miscellaneous_36007112
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Tech Science Press
subjects Boundary conditions
Boundary value problems
Domains
Electric potential
Equations of motion
Finite element method
Galerkin method
Linear algebra
Magnetic properties
Material properties
Meshless methods
Partial differential equations
Piezoelectricity
Time dependence
title Modeling of Intelligent Material Systems by the MLPG
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Intelligent%20Material%20Systems%20by%20the%20MLPG&rft.jtitle=Computer%20modeling%20in%20engineering%20&%20sciences&rft.au=Sladek,%20J&rft.date=2008&rft.volume=34&rft.issue=3&rft.spage=273&rft.epage=300&rft.pages=273-300&rft.issn=1526-1492&rft.eissn=1526-1506&rft_id=info:doi/10.3970/cmes.2008.034.273&rft_dat=%3Cproquest%3E2397457420%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397457420&rft_id=info:pmid/&rfr_iscdi=true