A generalized Milne–Thomson theorem for the case of parabolic inclusion

Complex analysis methods are applied to determine a velocity field of seepage in a heterogeneous infinite planar medium consisting of two dissimilar homogeneous components with a parabolic interface. New cases with arbitrary singularities of the principal part of a required complex potential are con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2009-04, Vol.33 (4), p.1970-1981
1. Verfasser: Obnosov, Yu.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1981
container_issue 4
container_start_page 1970
container_title Applied mathematical modelling
container_volume 33
creator Obnosov, Yu.V.
description Complex analysis methods are applied to determine a velocity field of seepage in a heterogeneous infinite planar medium consisting of two dissimilar homogeneous components with a parabolic interface. New cases with arbitrary singularities of the principal part of a required complex potential are considered.
doi_str_mv 10.1016/j.apm.2008.05.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35934832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X08001108</els_id><sourcerecordid>35934832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-a7c4fdba160010b8b086bf6c88d82ddf94b024f14f0ff50e05423ba13f58adee3</originalsourceid><addsrcrecordid>eNp9kL9OwzAQhz2ARCk8AJsntoRz7KSumKqKf1IRS5HYLMc-U1dJHOwUCSbegTfkSUhVZqb7nfT9TrqPkAsGOQNWXW1z3bd5ASBzKHMAcUQmwGGWzUG8nJDTlLYAUI7bhDws6Ct2GHXjP9HSR990-PP1vd6ENoWODhsMEVvqQtxnanRCGhztddR1aLyhvjPNLvnQnZFjp5uE539zSp5vb9bL-2z1dPewXKwywws5ZHpmhLO1ZhUAg1rWIKvaVUZKKwtr3VzUUAjHhAPnSkAoRcFHnLtSaovIp-TycLeP4W2HaVCtTwabRncYdknxcs6F5MUIsgNoYkgpolN99K2OH4qB2otSWzWKUntRCko1iho714cOjh-8e4wqGY-dQesjmkHZ4P9p_wLFk3SU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35934832</pqid></control><display><type>article</type><title>A generalized Milne–Thomson theorem for the case of parabolic inclusion</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Obnosov, Yu.V.</creator><creatorcontrib>Obnosov, Yu.V.</creatorcontrib><description>Complex analysis methods are applied to determine a velocity field of seepage in a heterogeneous infinite planar medium consisting of two dissimilar homogeneous components with a parabolic interface. New cases with arbitrary singularities of the principal part of a required complex potential are considered.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2008.05.004</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Analytic functions ; Circular theorem ; Heterogeneous media</subject><ispartof>Applied mathematical modelling, 2009-04, Vol.33 (4), p.1970-1981</ispartof><rights>2008 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-a7c4fdba160010b8b086bf6c88d82ddf94b024f14f0ff50e05423ba13f58adee3</citedby><cites>FETCH-LOGICAL-c328t-a7c4fdba160010b8b086bf6c88d82ddf94b024f14f0ff50e05423ba13f58adee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2008.05.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Obnosov, Yu.V.</creatorcontrib><title>A generalized Milne–Thomson theorem for the case of parabolic inclusion</title><title>Applied mathematical modelling</title><description>Complex analysis methods are applied to determine a velocity field of seepage in a heterogeneous infinite planar medium consisting of two dissimilar homogeneous components with a parabolic interface. New cases with arbitrary singularities of the principal part of a required complex potential are considered.</description><subject>Analytic functions</subject><subject>Circular theorem</subject><subject>Heterogeneous media</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQhz2ARCk8AJsntoRz7KSumKqKf1IRS5HYLMc-U1dJHOwUCSbegTfkSUhVZqb7nfT9TrqPkAsGOQNWXW1z3bd5ASBzKHMAcUQmwGGWzUG8nJDTlLYAUI7bhDws6Ct2GHXjP9HSR990-PP1vd6ENoWODhsMEVvqQtxnanRCGhztddR1aLyhvjPNLvnQnZFjp5uE539zSp5vb9bL-2z1dPewXKwywws5ZHpmhLO1ZhUAg1rWIKvaVUZKKwtr3VzUUAjHhAPnSkAoRcFHnLtSaovIp-TycLeP4W2HaVCtTwabRncYdknxcs6F5MUIsgNoYkgpolN99K2OH4qB2otSWzWKUntRCko1iho714cOjh-8e4wqGY-dQesjmkHZ4P9p_wLFk3SU</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Obnosov, Yu.V.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090401</creationdate><title>A generalized Milne–Thomson theorem for the case of parabolic inclusion</title><author>Obnosov, Yu.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-a7c4fdba160010b8b086bf6c88d82ddf94b024f14f0ff50e05423ba13f58adee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytic functions</topic><topic>Circular theorem</topic><topic>Heterogeneous media</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obnosov, Yu.V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obnosov, Yu.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized Milne–Thomson theorem for the case of parabolic inclusion</atitle><jtitle>Applied mathematical modelling</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>33</volume><issue>4</issue><spage>1970</spage><epage>1981</epage><pages>1970-1981</pages><issn>0307-904X</issn><abstract>Complex analysis methods are applied to determine a velocity field of seepage in a heterogeneous infinite planar medium consisting of two dissimilar homogeneous components with a parabolic interface. New cases with arbitrary singularities of the principal part of a required complex potential are considered.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2008.05.004</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2009-04, Vol.33 (4), p.1970-1981
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_35934832
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Analytic functions
Circular theorem
Heterogeneous media
title A generalized Milne–Thomson theorem for the case of parabolic inclusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20Milne%E2%80%93Thomson%20theorem%20for%20the%20case%20of%20parabolic%20inclusion&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Obnosov,%20Yu.V.&rft.date=2009-04-01&rft.volume=33&rft.issue=4&rft.spage=1970&rft.epage=1981&rft.pages=1970-1981&rft.issn=0307-904X&rft_id=info:doi/10.1016/j.apm.2008.05.004&rft_dat=%3Cproquest_cross%3E35934832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35934832&rft_id=info:pmid/&rft_els_id=S0307904X08001108&rfr_iscdi=true