Carbon nanotube composite curing through absorption of microwave radiation

The microwave absorbing properties and subsequent heating of carbon nanotubes can be used to rapidly cure ceramic composites. With less than 1 wt% carbon nanotube additives and 30–40 W of directed microwave power (2.45 GHz), bulk composite samples reach temperatures above 500 °C within 1 min. Multiw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2008-12, Vol.68 (15), p.3087-3092
Hauptverfasser: Higginbotham, Amanda L., Moloney, Padraig G., Waid, Michael C., Duque, Juan G., Kittrell, Carter, Schmidt, Howard K., Stephenson, Jason J., Arepalli, Sivaram, Yowell, Leonard L., Tour, James M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3092
container_issue 15
container_start_page 3087
container_title Composites science and technology
container_volume 68
creator Higginbotham, Amanda L.
Moloney, Padraig G.
Waid, Michael C.
Duque, Juan G.
Kittrell, Carter
Schmidt, Howard K.
Stephenson, Jason J.
Arepalli, Sivaram
Yowell, Leonard L.
Tour, James M.
description The microwave absorbing properties and subsequent heating of carbon nanotubes can be used to rapidly cure ceramic composites. With less than 1 wt% carbon nanotube additives and 30–40 W of directed microwave power (2.45 GHz), bulk composite samples reach temperatures above 500 °C within 1 min. Multiwalled carbon nanotubes (MWNTs), functionalized MWNTs (f-MWNTs), raw single-walled carbon nanotubes (r-SWNTs) and purified SWNTs (p-SWNTs) were all used to produce composites in Starfire ® SMP-10 silicon carbide pre-ceramic. MWNTs loaded at 0.75 wt% in SMP-10 consistently displayed the fastest rate of heating (∼500 °C in 10 s) and highest temperatures (1150 °C in 7 min). The degree of composite curing was monitored by TGA. The nanotube/matrix dispersion and integrity was imaged using optical microscopy, TEM and SEM, and Raman spectroscopy was used to determine the state of the nanotubes after exposure to microwave radiation.
doi_str_mv 10.1016/j.compscitech.2008.07.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35834315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353808002595</els_id><sourcerecordid>35834315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-ce8e0f780c294f1f6c1aa12e301ef3a215e0bf5c8c0a197de042fa4ca0164a893</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEuPjP5QD3Fqcpl3TI5r41CQucI48z9kybc1IWhD_nkybEEdOlqzHj-1XiCsJhQQ5vl0V5DfbSK5nWhYlgC6gKQCqIzGSumlzCTUcixGU43GuaqVPxVmMKwBo6rYciZcJhpnvsg473w8zznY6H5MuoyG4bpH1y-CHxTLDWfRh27sEe5ttHAX_hZ-cBZw73LUvxInFdeTLQz0X7w_3b5OnfPr6-Dy5m-ZUVbrPiTWDbTRQ2VZW2jFJRFmyAslWYSlrhpmtSROgbJs5Q1VarAjTuxXqVp2Lm713G_zHwLE3GxeJ12vs2A_RqFqrSsk6ge0eTKfGGNiabXAbDN9GgtmlZ1bmT3pml56BxqT00uz1YQlGwrUN2JGLv4ISWqWbRidusuc4ffzpOJhk44547gJTb-be_WPbD3efjXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35834315</pqid></control><display><type>article</type><title>Carbon nanotube composite curing through absorption of microwave radiation</title><source>Elsevier ScienceDirect Journals</source><creator>Higginbotham, Amanda L. ; Moloney, Padraig G. ; Waid, Michael C. ; Duque, Juan G. ; Kittrell, Carter ; Schmidt, Howard K. ; Stephenson, Jason J. ; Arepalli, Sivaram ; Yowell, Leonard L. ; Tour, James M.</creator><creatorcontrib>Higginbotham, Amanda L. ; Moloney, Padraig G. ; Waid, Michael C. ; Duque, Juan G. ; Kittrell, Carter ; Schmidt, Howard K. ; Stephenson, Jason J. ; Arepalli, Sivaram ; Yowell, Leonard L. ; Tour, James M.</creatorcontrib><description>The microwave absorbing properties and subsequent heating of carbon nanotubes can be used to rapidly cure ceramic composites. With less than 1 wt% carbon nanotube additives and 30–40 W of directed microwave power (2.45 GHz), bulk composite samples reach temperatures above 500 °C within 1 min. Multiwalled carbon nanotubes (MWNTs), functionalized MWNTs (f-MWNTs), raw single-walled carbon nanotubes (r-SWNTs) and purified SWNTs (p-SWNTs) were all used to produce composites in Starfire ® SMP-10 silicon carbide pre-ceramic. MWNTs loaded at 0.75 wt% in SMP-10 consistently displayed the fastest rate of heating (∼500 °C in 10 s) and highest temperatures (1150 °C in 7 min). The degree of composite curing was monitored by TGA. The nanotube/matrix dispersion and integrity was imaged using optical microscopy, TEM and SEM, and Raman spectroscopy was used to determine the state of the nanotubes after exposure to microwave radiation.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2008.07.004</identifier><identifier>CODEN: CSTCEH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Carbon nanotubes ; A. Ceramic-matrix composites ; Applied sciences ; B. Curing ; Building materials. Ceramics. Glasses ; Ceramic industries ; Chemical industry and chemicals ; Cross-disciplinary physics: materials science; rheology ; E. Microwave Processing ; Exact sciences and technology ; Materials science ; Miscellaneous ; Other materials ; Physics ; Specific materials ; Technical ceramics</subject><ispartof>Composites science and technology, 2008-12, Vol.68 (15), p.3087-3092</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-ce8e0f780c294f1f6c1aa12e301ef3a215e0bf5c8c0a197de042fa4ca0164a893</citedby><cites>FETCH-LOGICAL-c448t-ce8e0f780c294f1f6c1aa12e301ef3a215e0bf5c8c0a197de042fa4ca0164a893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0266353808002595$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20938778$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Higginbotham, Amanda L.</creatorcontrib><creatorcontrib>Moloney, Padraig G.</creatorcontrib><creatorcontrib>Waid, Michael C.</creatorcontrib><creatorcontrib>Duque, Juan G.</creatorcontrib><creatorcontrib>Kittrell, Carter</creatorcontrib><creatorcontrib>Schmidt, Howard K.</creatorcontrib><creatorcontrib>Stephenson, Jason J.</creatorcontrib><creatorcontrib>Arepalli, Sivaram</creatorcontrib><creatorcontrib>Yowell, Leonard L.</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><title>Carbon nanotube composite curing through absorption of microwave radiation</title><title>Composites science and technology</title><description>The microwave absorbing properties and subsequent heating of carbon nanotubes can be used to rapidly cure ceramic composites. With less than 1 wt% carbon nanotube additives and 30–40 W of directed microwave power (2.45 GHz), bulk composite samples reach temperatures above 500 °C within 1 min. Multiwalled carbon nanotubes (MWNTs), functionalized MWNTs (f-MWNTs), raw single-walled carbon nanotubes (r-SWNTs) and purified SWNTs (p-SWNTs) were all used to produce composites in Starfire ® SMP-10 silicon carbide pre-ceramic. MWNTs loaded at 0.75 wt% in SMP-10 consistently displayed the fastest rate of heating (∼500 °C in 10 s) and highest temperatures (1150 °C in 7 min). The degree of composite curing was monitored by TGA. The nanotube/matrix dispersion and integrity was imaged using optical microscopy, TEM and SEM, and Raman spectroscopy was used to determine the state of the nanotubes after exposure to microwave radiation.</description><subject>A. Carbon nanotubes</subject><subject>A. Ceramic-matrix composites</subject><subject>Applied sciences</subject><subject>B. Curing</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Chemical industry and chemicals</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>E. Microwave Processing</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Miscellaneous</subject><subject>Other materials</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Technical ceramics</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEEuPjP5QD3Fqcpl3TI5r41CQucI48z9kybc1IWhD_nkybEEdOlqzHj-1XiCsJhQQ5vl0V5DfbSK5nWhYlgC6gKQCqIzGSumlzCTUcixGU43GuaqVPxVmMKwBo6rYciZcJhpnvsg473w8zznY6H5MuoyG4bpH1y-CHxTLDWfRh27sEe5ttHAX_hZ-cBZw73LUvxInFdeTLQz0X7w_3b5OnfPr6-Dy5m-ZUVbrPiTWDbTRQ2VZW2jFJRFmyAslWYSlrhpmtSROgbJs5Q1VarAjTuxXqVp2Lm713G_zHwLE3GxeJ12vs2A_RqFqrSsk6ge0eTKfGGNiabXAbDN9GgtmlZ1bmT3pml56BxqT00uz1YQlGwrUN2JGLv4ISWqWbRidusuc4ffzpOJhk44547gJTb-be_WPbD3efjXQ</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Higginbotham, Amanda L.</creator><creator>Moloney, Padraig G.</creator><creator>Waid, Michael C.</creator><creator>Duque, Juan G.</creator><creator>Kittrell, Carter</creator><creator>Schmidt, Howard K.</creator><creator>Stephenson, Jason J.</creator><creator>Arepalli, Sivaram</creator><creator>Yowell, Leonard L.</creator><creator>Tour, James M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20081201</creationdate><title>Carbon nanotube composite curing through absorption of microwave radiation</title><author>Higginbotham, Amanda L. ; Moloney, Padraig G. ; Waid, Michael C. ; Duque, Juan G. ; Kittrell, Carter ; Schmidt, Howard K. ; Stephenson, Jason J. ; Arepalli, Sivaram ; Yowell, Leonard L. ; Tour, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-ce8e0f780c294f1f6c1aa12e301ef3a215e0bf5c8c0a197de042fa4ca0164a893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>A. Carbon nanotubes</topic><topic>A. Ceramic-matrix composites</topic><topic>Applied sciences</topic><topic>B. Curing</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Chemical industry and chemicals</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>E. Microwave Processing</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Miscellaneous</topic><topic>Other materials</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Technical ceramics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Higginbotham, Amanda L.</creatorcontrib><creatorcontrib>Moloney, Padraig G.</creatorcontrib><creatorcontrib>Waid, Michael C.</creatorcontrib><creatorcontrib>Duque, Juan G.</creatorcontrib><creatorcontrib>Kittrell, Carter</creatorcontrib><creatorcontrib>Schmidt, Howard K.</creatorcontrib><creatorcontrib>Stephenson, Jason J.</creatorcontrib><creatorcontrib>Arepalli, Sivaram</creatorcontrib><creatorcontrib>Yowell, Leonard L.</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Higginbotham, Amanda L.</au><au>Moloney, Padraig G.</au><au>Waid, Michael C.</au><au>Duque, Juan G.</au><au>Kittrell, Carter</au><au>Schmidt, Howard K.</au><au>Stephenson, Jason J.</au><au>Arepalli, Sivaram</au><au>Yowell, Leonard L.</au><au>Tour, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotube composite curing through absorption of microwave radiation</atitle><jtitle>Composites science and technology</jtitle><date>2008-12-01</date><risdate>2008</risdate><volume>68</volume><issue>15</issue><spage>3087</spage><epage>3092</epage><pages>3087-3092</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><coden>CSTCEH</coden><abstract>The microwave absorbing properties and subsequent heating of carbon nanotubes can be used to rapidly cure ceramic composites. With less than 1 wt% carbon nanotube additives and 30–40 W of directed microwave power (2.45 GHz), bulk composite samples reach temperatures above 500 °C within 1 min. Multiwalled carbon nanotubes (MWNTs), functionalized MWNTs (f-MWNTs), raw single-walled carbon nanotubes (r-SWNTs) and purified SWNTs (p-SWNTs) were all used to produce composites in Starfire ® SMP-10 silicon carbide pre-ceramic. MWNTs loaded at 0.75 wt% in SMP-10 consistently displayed the fastest rate of heating (∼500 °C in 10 s) and highest temperatures (1150 °C in 7 min). The degree of composite curing was monitored by TGA. The nanotube/matrix dispersion and integrity was imaged using optical microscopy, TEM and SEM, and Raman spectroscopy was used to determine the state of the nanotubes after exposure to microwave radiation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2008.07.004</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2008-12, Vol.68 (15), p.3087-3092
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_miscellaneous_35834315
source Elsevier ScienceDirect Journals
subjects A. Carbon nanotubes
A. Ceramic-matrix composites
Applied sciences
B. Curing
Building materials. Ceramics. Glasses
Ceramic industries
Chemical industry and chemicals
Cross-disciplinary physics: materials science
rheology
E. Microwave Processing
Exact sciences and technology
Materials science
Miscellaneous
Other materials
Physics
Specific materials
Technical ceramics
title Carbon nanotube composite curing through absorption of microwave radiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T12%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotube%20composite%20curing%20through%20absorption%20of%20microwave%20radiation&rft.jtitle=Composites%20science%20and%20technology&rft.au=Higginbotham,%20Amanda%20L.&rft.date=2008-12-01&rft.volume=68&rft.issue=15&rft.spage=3087&rft.epage=3092&rft.pages=3087-3092&rft.issn=0266-3538&rft.eissn=1879-1050&rft.coden=CSTCEH&rft_id=info:doi/10.1016/j.compscitech.2008.07.004&rft_dat=%3Cproquest_cross%3E35834315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35834315&rft_id=info:pmid/&rft_els_id=S0266353808002595&rfr_iscdi=true