Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments

Fatigue tests under constant amplitude load were conducted on CT specimens of A533B3 steels with four levels of sulfur content at different temperatures in air and high-temperature water environments. A modified capacitance-type COD gauge was shown to be suitable for fatigue crack length measurement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of pressure vessels and piping 2008-11, Vol.85 (11), p.772-781
Hauptverfasser: Huang, J.Y., Yeh, J.J., Kuo, R.C., Jeng, S.L., Young, M.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 781
container_issue 11
container_start_page 772
container_title The International journal of pressure vessels and piping
container_volume 85
creator Huang, J.Y.
Yeh, J.J.
Kuo, R.C.
Jeng, S.L.
Young, M.C.
description Fatigue tests under constant amplitude load were conducted on CT specimens of A533B3 steels with four levels of sulfur content at different temperatures in air and high-temperature water environments. A modified capacitance-type COD gauge was shown to be suitable for fatigue crack length measurement at high temperatures in air. The observation that the Young's moduli measured at a strain rate of 4 × 10 −3 s −1 for the A533B3 steels at 150 °C and 300 °C did not decrease with an increase in temperature seemed to be related to the presence of dynamic strain aging. The fatigue crack growth rates at 150 °C and 300 °C in air were about two and half times slower than those tested at 400 °C, because dynamic strain aging prevailed at 150 °C and 300 °C. Fractographic examination results suggested that inclusions embedded in secondary cracks enhanced the fatigue crack initiation rather than the fatigue crack growth. The fatigue crack growth rates taken in the oxygen-saturated water environment were one order of magnitude faster than those obtained in air.
doi_str_mv 10.1016/j.ijpvp.2008.08.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35798040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308016108001038</els_id><sourcerecordid>35798040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-67ddfe490ff74495f1ae534f3ee8d644fa7274450a928b489ec9009d28e206843</originalsourceid><addsrcrecordid>eNp9kEFP3DAQha0KpC7QX9CLL-0tyzh2EufAAaHSIiFxgbNlnPGut1knHXuD-PckXcQRaaQ30nzvjfQY-y5gLUDUl7t12I3TuC4B9HoZkF_YSuimLWSlxAlbgQRdzKj4ys5S2gGIBqp6xeKtzWFzQO7Iur98Q8NL3vJn3NopDMQHzwmty_M6EqZ0IOTTrNjzlBH7xEPkNhC3sePbsNkWGfcjks0L-WIzEsc4BRriHmNOF-zU2z7ht3c9Z0-3vx5v_hT3D7_vbq7vCydrlYu66TqPqgXvG6XayguLlVReIuquVsrbppwPFdi21M9Kt-hagLYrNZZQayXP2c9j7kjDvwOmbPYhOex7G3E4JCOrptWgYAblEXQ0pETozUhhb-nVCDBLt2Zn_ndrlm7NMiBn14_3eJuc7T3Z6EL6sJaghaplOXNXR25uCqeAZJILGB12gdBl0w3h0z9vKmaSiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35798040</pqid></control><display><type>article</type><title>Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Huang, J.Y. ; Yeh, J.J. ; Kuo, R.C. ; Jeng, S.L. ; Young, M.C.</creator><creatorcontrib>Huang, J.Y. ; Yeh, J.J. ; Kuo, R.C. ; Jeng, S.L. ; Young, M.C.</creatorcontrib><description>Fatigue tests under constant amplitude load were conducted on CT specimens of A533B3 steels with four levels of sulfur content at different temperatures in air and high-temperature water environments. A modified capacitance-type COD gauge was shown to be suitable for fatigue crack length measurement at high temperatures in air. The observation that the Young's moduli measured at a strain rate of 4 × 10 −3 s −1 for the A533B3 steels at 150 °C and 300 °C did not decrease with an increase in temperature seemed to be related to the presence of dynamic strain aging. The fatigue crack growth rates at 150 °C and 300 °C in air were about two and half times slower than those tested at 400 °C, because dynamic strain aging prevailed at 150 °C and 300 °C. Fractographic examination results suggested that inclusions embedded in secondary cracks enhanced the fatigue crack initiation rather than the fatigue crack growth. The fatigue crack growth rates taken in the oxygen-saturated water environment were one order of magnitude faster than those obtained in air.</description><identifier>ISSN: 0308-0161</identifier><identifier>EISSN: 1879-3541</identifier><identifier>DOI: 10.1016/j.ijpvp.2008.08.003</identifier><identifier>CODEN: PRVPAS</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>ACPD technique ; Applied sciences ; Capacitance-type COD gauge ; Dynamic strain aging ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fatigue crack growth ; Fission nuclear power plants ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Installations for energy generation and conversion: thermal and electrical energy ; Mechanical engineering. Machine design ; Physics ; Solid mechanics ; Steel design ; Steel tanks and pressure vessels; boiler manufacturing ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Water chemistry</subject><ispartof>The International journal of pressure vessels and piping, 2008-11, Vol.85 (11), p.772-781</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-67ddfe490ff74495f1ae534f3ee8d644fa7274450a928b489ec9009d28e206843</citedby><cites>FETCH-LOGICAL-c364t-67ddfe490ff74495f1ae534f3ee8d644fa7274450a928b489ec9009d28e206843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpvp.2008.08.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20814632$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, J.Y.</creatorcontrib><creatorcontrib>Yeh, J.J.</creatorcontrib><creatorcontrib>Kuo, R.C.</creatorcontrib><creatorcontrib>Jeng, S.L.</creatorcontrib><creatorcontrib>Young, M.C.</creatorcontrib><title>Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments</title><title>The International journal of pressure vessels and piping</title><description>Fatigue tests under constant amplitude load were conducted on CT specimens of A533B3 steels with four levels of sulfur content at different temperatures in air and high-temperature water environments. A modified capacitance-type COD gauge was shown to be suitable for fatigue crack length measurement at high temperatures in air. The observation that the Young's moduli measured at a strain rate of 4 × 10 −3 s −1 for the A533B3 steels at 150 °C and 300 °C did not decrease with an increase in temperature seemed to be related to the presence of dynamic strain aging. The fatigue crack growth rates at 150 °C and 300 °C in air were about two and half times slower than those tested at 400 °C, because dynamic strain aging prevailed at 150 °C and 300 °C. Fractographic examination results suggested that inclusions embedded in secondary cracks enhanced the fatigue crack initiation rather than the fatigue crack growth. The fatigue crack growth rates taken in the oxygen-saturated water environment were one order of magnitude faster than those obtained in air.</description><subject>ACPD technique</subject><subject>Applied sciences</subject><subject>Capacitance-type COD gauge</subject><subject>Dynamic strain aging</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fatigue crack growth</subject><subject>Fission nuclear power plants</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Mechanical engineering. Machine design</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Steel design</subject><subject>Steel tanks and pressure vessels; boiler manufacturing</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Water chemistry</subject><issn>0308-0161</issn><issn>1879-3541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kEFP3DAQha0KpC7QX9CLL-0tyzh2EufAAaHSIiFxgbNlnPGut1knHXuD-PckXcQRaaQ30nzvjfQY-y5gLUDUl7t12I3TuC4B9HoZkF_YSuimLWSlxAlbgQRdzKj4ys5S2gGIBqp6xeKtzWFzQO7Iur98Q8NL3vJn3NopDMQHzwmty_M6EqZ0IOTTrNjzlBH7xEPkNhC3sePbsNkWGfcjks0L-WIzEsc4BRriHmNOF-zU2z7ht3c9Z0-3vx5v_hT3D7_vbq7vCydrlYu66TqPqgXvG6XayguLlVReIuquVsrbppwPFdi21M9Kt-hagLYrNZZQayXP2c9j7kjDvwOmbPYhOex7G3E4JCOrptWgYAblEXQ0pETozUhhb-nVCDBLt2Zn_ndrlm7NMiBn14_3eJuc7T3Z6EL6sJaghaplOXNXR25uCqeAZJILGB12gdBl0w3h0z9vKmaSiw</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Huang, J.Y.</creator><creator>Yeh, J.J.</creator><creator>Kuo, R.C.</creator><creator>Jeng, S.L.</creator><creator>Young, M.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20081101</creationdate><title>Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments</title><author>Huang, J.Y. ; Yeh, J.J. ; Kuo, R.C. ; Jeng, S.L. ; Young, M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-67ddfe490ff74495f1ae534f3ee8d644fa7274450a928b489ec9009d28e206843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>ACPD technique</topic><topic>Applied sciences</topic><topic>Capacitance-type COD gauge</topic><topic>Dynamic strain aging</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fatigue crack growth</topic><topic>Fission nuclear power plants</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Mechanical engineering. Machine design</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Steel design</topic><topic>Steel tanks and pressure vessels; boiler manufacturing</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, J.Y.</creatorcontrib><creatorcontrib>Yeh, J.J.</creatorcontrib><creatorcontrib>Kuo, R.C.</creatorcontrib><creatorcontrib>Jeng, S.L.</creatorcontrib><creatorcontrib>Young, M.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>The International journal of pressure vessels and piping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, J.Y.</au><au>Yeh, J.J.</au><au>Kuo, R.C.</au><au>Jeng, S.L.</au><au>Young, M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments</atitle><jtitle>The International journal of pressure vessels and piping</jtitle><date>2008-11-01</date><risdate>2008</risdate><volume>85</volume><issue>11</issue><spage>772</spage><epage>781</epage><pages>772-781</pages><issn>0308-0161</issn><eissn>1879-3541</eissn><coden>PRVPAS</coden><abstract>Fatigue tests under constant amplitude load were conducted on CT specimens of A533B3 steels with four levels of sulfur content at different temperatures in air and high-temperature water environments. A modified capacitance-type COD gauge was shown to be suitable for fatigue crack length measurement at high temperatures in air. The observation that the Young's moduli measured at a strain rate of 4 × 10 −3 s −1 for the A533B3 steels at 150 °C and 300 °C did not decrease with an increase in temperature seemed to be related to the presence of dynamic strain aging. The fatigue crack growth rates at 150 °C and 300 °C in air were about two and half times slower than those tested at 400 °C, because dynamic strain aging prevailed at 150 °C and 300 °C. Fractographic examination results suggested that inclusions embedded in secondary cracks enhanced the fatigue crack initiation rather than the fatigue crack growth. The fatigue crack growth rates taken in the oxygen-saturated water environment were one order of magnitude faster than those obtained in air.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijpvp.2008.08.003</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-0161
ispartof The International journal of pressure vessels and piping, 2008-11, Vol.85 (11), p.772-781
issn 0308-0161
1879-3541
language eng
recordid cdi_proquest_miscellaneous_35798040
source ScienceDirect Journals (5 years ago - present)
subjects ACPD technique
Applied sciences
Capacitance-type COD gauge
Dynamic strain aging
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fatigue crack growth
Fission nuclear power plants
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Installations for energy generation and conversion: thermal and electrical energy
Mechanical engineering. Machine design
Physics
Solid mechanics
Steel design
Steel tanks and pressure vessels
boiler manufacturing
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Water chemistry
title Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20crack%20growth%20behavior%20of%20reactor%20pressure%20vessel%20steels%20in%20air%20and%20high-temperature%20water%20environments&rft.jtitle=The%20International%20journal%20of%20pressure%20vessels%20and%20piping&rft.au=Huang,%20J.Y.&rft.date=2008-11-01&rft.volume=85&rft.issue=11&rft.spage=772&rft.epage=781&rft.pages=772-781&rft.issn=0308-0161&rft.eissn=1879-3541&rft.coden=PRVPAS&rft_id=info:doi/10.1016/j.ijpvp.2008.08.003&rft_dat=%3Cproquest_cross%3E35798040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35798040&rft_id=info:pmid/&rft_els_id=S0308016108001038&rfr_iscdi=true