Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments
Fatigue tests under constant amplitude load were conducted on CT specimens of A533B3 steels with four levels of sulfur content at different temperatures in air and high-temperature water environments. A modified capacitance-type COD gauge was shown to be suitable for fatigue crack length measurement...
Gespeichert in:
Veröffentlicht in: | The International journal of pressure vessels and piping 2008-11, Vol.85 (11), p.772-781 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 781 |
---|---|
container_issue | 11 |
container_start_page | 772 |
container_title | The International journal of pressure vessels and piping |
container_volume | 85 |
creator | Huang, J.Y. Yeh, J.J. Kuo, R.C. Jeng, S.L. Young, M.C. |
description | Fatigue tests under constant amplitude load were conducted on CT specimens of A533B3 steels with four levels of sulfur content at different temperatures in air and high-temperature water environments. A modified capacitance-type COD gauge was shown to be suitable for fatigue crack length measurement at high temperatures in air. The observation that the Young's moduli measured at a strain rate of 4
×
10
−3
s
−1 for the A533B3 steels at 150
°C and 300
°C did not decrease with an increase in temperature seemed to be related to the presence of dynamic strain aging. The fatigue crack growth rates at 150
°C and 300
°C in air were about two and half times slower than those tested at 400
°C, because dynamic strain aging prevailed at 150
°C and 300
°C. Fractographic examination results suggested that inclusions embedded in secondary cracks enhanced the fatigue crack initiation rather than the fatigue crack growth. The fatigue crack growth rates taken in the oxygen-saturated water environment were one order of magnitude faster than those obtained in air. |
doi_str_mv | 10.1016/j.ijpvp.2008.08.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35798040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308016108001038</els_id><sourcerecordid>35798040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-67ddfe490ff74495f1ae534f3ee8d644fa7274450a928b489ec9009d28e206843</originalsourceid><addsrcrecordid>eNp9kEFP3DAQha0KpC7QX9CLL-0tyzh2EufAAaHSIiFxgbNlnPGut1knHXuD-PckXcQRaaQ30nzvjfQY-y5gLUDUl7t12I3TuC4B9HoZkF_YSuimLWSlxAlbgQRdzKj4ys5S2gGIBqp6xeKtzWFzQO7Iur98Q8NL3vJn3NopDMQHzwmty_M6EqZ0IOTTrNjzlBH7xEPkNhC3sePbsNkWGfcjks0L-WIzEsc4BRriHmNOF-zU2z7ht3c9Z0-3vx5v_hT3D7_vbq7vCydrlYu66TqPqgXvG6XayguLlVReIuquVsrbppwPFdi21M9Kt-hagLYrNZZQayXP2c9j7kjDvwOmbPYhOex7G3E4JCOrptWgYAblEXQ0pETozUhhb-nVCDBLt2Zn_ndrlm7NMiBn14_3eJuc7T3Z6EL6sJaghaplOXNXR25uCqeAZJILGB12gdBl0w3h0z9vKmaSiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35798040</pqid></control><display><type>article</type><title>Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Huang, J.Y. ; Yeh, J.J. ; Kuo, R.C. ; Jeng, S.L. ; Young, M.C.</creator><creatorcontrib>Huang, J.Y. ; Yeh, J.J. ; Kuo, R.C. ; Jeng, S.L. ; Young, M.C.</creatorcontrib><description>Fatigue tests under constant amplitude load were conducted on CT specimens of A533B3 steels with four levels of sulfur content at different temperatures in air and high-temperature water environments. A modified capacitance-type COD gauge was shown to be suitable for fatigue crack length measurement at high temperatures in air. The observation that the Young's moduli measured at a strain rate of 4
×
10
−3
s
−1 for the A533B3 steels at 150
°C and 300
°C did not decrease with an increase in temperature seemed to be related to the presence of dynamic strain aging. The fatigue crack growth rates at 150
°C and 300
°C in air were about two and half times slower than those tested at 400
°C, because dynamic strain aging prevailed at 150
°C and 300
°C. Fractographic examination results suggested that inclusions embedded in secondary cracks enhanced the fatigue crack initiation rather than the fatigue crack growth. The fatigue crack growth rates taken in the oxygen-saturated water environment were one order of magnitude faster than those obtained in air.</description><identifier>ISSN: 0308-0161</identifier><identifier>EISSN: 1879-3541</identifier><identifier>DOI: 10.1016/j.ijpvp.2008.08.003</identifier><identifier>CODEN: PRVPAS</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>ACPD technique ; Applied sciences ; Capacitance-type COD gauge ; Dynamic strain aging ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fatigue crack growth ; Fission nuclear power plants ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Installations for energy generation and conversion: thermal and electrical energy ; Mechanical engineering. Machine design ; Physics ; Solid mechanics ; Steel design ; Steel tanks and pressure vessels; boiler manufacturing ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Water chemistry</subject><ispartof>The International journal of pressure vessels and piping, 2008-11, Vol.85 (11), p.772-781</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-67ddfe490ff74495f1ae534f3ee8d644fa7274450a928b489ec9009d28e206843</citedby><cites>FETCH-LOGICAL-c364t-67ddfe490ff74495f1ae534f3ee8d644fa7274450a928b489ec9009d28e206843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpvp.2008.08.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20814632$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, J.Y.</creatorcontrib><creatorcontrib>Yeh, J.J.</creatorcontrib><creatorcontrib>Kuo, R.C.</creatorcontrib><creatorcontrib>Jeng, S.L.</creatorcontrib><creatorcontrib>Young, M.C.</creatorcontrib><title>Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments</title><title>The International journal of pressure vessels and piping</title><description>Fatigue tests under constant amplitude load were conducted on CT specimens of A533B3 steels with four levels of sulfur content at different temperatures in air and high-temperature water environments. A modified capacitance-type COD gauge was shown to be suitable for fatigue crack length measurement at high temperatures in air. The observation that the Young's moduli measured at a strain rate of 4
×
10
−3
s
−1 for the A533B3 steels at 150
°C and 300
°C did not decrease with an increase in temperature seemed to be related to the presence of dynamic strain aging. The fatigue crack growth rates at 150
°C and 300
°C in air were about two and half times slower than those tested at 400
°C, because dynamic strain aging prevailed at 150
°C and 300
°C. Fractographic examination results suggested that inclusions embedded in secondary cracks enhanced the fatigue crack initiation rather than the fatigue crack growth. The fatigue crack growth rates taken in the oxygen-saturated water environment were one order of magnitude faster than those obtained in air.</description><subject>ACPD technique</subject><subject>Applied sciences</subject><subject>Capacitance-type COD gauge</subject><subject>Dynamic strain aging</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fatigue crack growth</subject><subject>Fission nuclear power plants</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Mechanical engineering. Machine design</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Steel design</subject><subject>Steel tanks and pressure vessels; boiler manufacturing</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Water chemistry</subject><issn>0308-0161</issn><issn>1879-3541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kEFP3DAQha0KpC7QX9CLL-0tyzh2EufAAaHSIiFxgbNlnPGut1knHXuD-PckXcQRaaQ30nzvjfQY-y5gLUDUl7t12I3TuC4B9HoZkF_YSuimLWSlxAlbgQRdzKj4ys5S2gGIBqp6xeKtzWFzQO7Iur98Q8NL3vJn3NopDMQHzwmty_M6EqZ0IOTTrNjzlBH7xEPkNhC3sePbsNkWGfcjks0L-WIzEsc4BRriHmNOF-zU2z7ht3c9Z0-3vx5v_hT3D7_vbq7vCydrlYu66TqPqgXvG6XayguLlVReIuquVsrbppwPFdi21M9Kt-hagLYrNZZQayXP2c9j7kjDvwOmbPYhOex7G3E4JCOrptWgYAblEXQ0pETozUhhb-nVCDBLt2Zn_ndrlm7NMiBn14_3eJuc7T3Z6EL6sJaghaplOXNXR25uCqeAZJILGB12gdBl0w3h0z9vKmaSiw</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Huang, J.Y.</creator><creator>Yeh, J.J.</creator><creator>Kuo, R.C.</creator><creator>Jeng, S.L.</creator><creator>Young, M.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20081101</creationdate><title>Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments</title><author>Huang, J.Y. ; Yeh, J.J. ; Kuo, R.C. ; Jeng, S.L. ; Young, M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-67ddfe490ff74495f1ae534f3ee8d644fa7274450a928b489ec9009d28e206843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>ACPD technique</topic><topic>Applied sciences</topic><topic>Capacitance-type COD gauge</topic><topic>Dynamic strain aging</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fatigue crack growth</topic><topic>Fission nuclear power plants</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Mechanical engineering. Machine design</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Steel design</topic><topic>Steel tanks and pressure vessels; boiler manufacturing</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, J.Y.</creatorcontrib><creatorcontrib>Yeh, J.J.</creatorcontrib><creatorcontrib>Kuo, R.C.</creatorcontrib><creatorcontrib>Jeng, S.L.</creatorcontrib><creatorcontrib>Young, M.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>The International journal of pressure vessels and piping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, J.Y.</au><au>Yeh, J.J.</au><au>Kuo, R.C.</au><au>Jeng, S.L.</au><au>Young, M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments</atitle><jtitle>The International journal of pressure vessels and piping</jtitle><date>2008-11-01</date><risdate>2008</risdate><volume>85</volume><issue>11</issue><spage>772</spage><epage>781</epage><pages>772-781</pages><issn>0308-0161</issn><eissn>1879-3541</eissn><coden>PRVPAS</coden><abstract>Fatigue tests under constant amplitude load were conducted on CT specimens of A533B3 steels with four levels of sulfur content at different temperatures in air and high-temperature water environments. A modified capacitance-type COD gauge was shown to be suitable for fatigue crack length measurement at high temperatures in air. The observation that the Young's moduli measured at a strain rate of 4
×
10
−3
s
−1 for the A533B3 steels at 150
°C and 300
°C did not decrease with an increase in temperature seemed to be related to the presence of dynamic strain aging. The fatigue crack growth rates at 150
°C and 300
°C in air were about two and half times slower than those tested at 400
°C, because dynamic strain aging prevailed at 150
°C and 300
°C. Fractographic examination results suggested that inclusions embedded in secondary cracks enhanced the fatigue crack initiation rather than the fatigue crack growth. The fatigue crack growth rates taken in the oxygen-saturated water environment were one order of magnitude faster than those obtained in air.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijpvp.2008.08.003</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-0161 |
ispartof | The International journal of pressure vessels and piping, 2008-11, Vol.85 (11), p.772-781 |
issn | 0308-0161 1879-3541 |
language | eng |
recordid | cdi_proquest_miscellaneous_35798040 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | ACPD technique Applied sciences Capacitance-type COD gauge Dynamic strain aging Energy Energy. Thermal use of fuels Exact sciences and technology Fatigue crack growth Fission nuclear power plants Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Installations for energy generation and conversion: thermal and electrical energy Mechanical engineering. Machine design Physics Solid mechanics Steel design Steel tanks and pressure vessels boiler manufacturing Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Water chemistry |
title | Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20crack%20growth%20behavior%20of%20reactor%20pressure%20vessel%20steels%20in%20air%20and%20high-temperature%20water%20environments&rft.jtitle=The%20International%20journal%20of%20pressure%20vessels%20and%20piping&rft.au=Huang,%20J.Y.&rft.date=2008-11-01&rft.volume=85&rft.issue=11&rft.spage=772&rft.epage=781&rft.pages=772-781&rft.issn=0308-0161&rft.eissn=1879-3541&rft.coden=PRVPAS&rft_id=info:doi/10.1016/j.ijpvp.2008.08.003&rft_dat=%3Cproquest_cross%3E35798040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35798040&rft_id=info:pmid/&rft_els_id=S0308016108001038&rfr_iscdi=true |