Very high efficiency triple junction solar cells grown by MOVPE

The GaInP/GaInAs/Ge triple junction (3J) space cell technology is nearing practical achievable conversion efficiency limits of ∼30% under 1-sun AM0 illumination. We present solar cell device-modeling results that indicate the GaInP/GaAs/GaInAs architecture with optimal bandgap energies will produce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2008-11, Vol.310 (23), p.5204-5208
Hauptverfasser: Stan, M., Aiken, D., Cho, B., Cornfeld, A., Diaz, J., Ley, V., Korostyshevsky, A., Patel, P., Sharps, P., Varghese, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5208
container_issue 23
container_start_page 5204
container_title Journal of crystal growth
container_volume 310
creator Stan, M.
Aiken, D.
Cho, B.
Cornfeld, A.
Diaz, J.
Ley, V.
Korostyshevsky, A.
Patel, P.
Sharps, P.
Varghese, T.
description The GaInP/GaInAs/Ge triple junction (3J) space cell technology is nearing practical achievable conversion efficiency limits of ∼30% under 1-sun AM0 illumination. We present solar cell device-modeling results that indicate the GaInP/GaAs/GaInAs architecture with optimal bandgap energies will produce an additional 4% output power relative to the present GaInP/GaInAs/Ge 3J space cell technology. We have grown the GaInP/GaAs/GaInAs 3J cell on GaAs substrates in an inverted fashion incorporating a 1.0 eV metamorphic GaInAs cell, using metal-organic vapor-phase epitaxy (MOVPE) in a production scale reactor. Nearly strain-free growth of the metamorphic GaInAs cell was verified by high-resolution X-ray reciprocal space mapping. From cathodoluminescence (CL) data, the 1.0 eV metamorphic GaInAs cell threading dislocation density (TDD) is estimated to be 5×10 6 cm −2. With this level of TDDs we are able to produce a 3J IMM cells with a one-sun AM0 efficiency of 32%. In addition, external quantum efficiency (EQE) data suggests that improvements in current matching of the subcells will result in an AM0 efficiency of 33%.
doi_str_mv 10.1016/j.jcrysgro.2008.07.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35736755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002202480800599X</els_id><sourcerecordid>35736755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-6170d4f008f2a91b4514f59bd4224611550080c1e8c5f342e52742932fa7fc653</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwF5AvcEtYO3YeJ0BVeUhF5QC9Wq5jt47SpNgpKP8ehxauXLySNbMz-yF0SSAmQNKbKq6U6_3KtTEFyGPIYqDsCI1IniURB6DHaBReGoXv_BSdeV8BBCeBEbpdaNfjtV2tsTbGKqsb1ePO2W2tcbVrVGfbBvu2lg4rXdceh5yvBi97_DJfvE7P0YmRtdcXhzlG7w_Tt8lTNJs_Pk_uZ5FiSdFFKcmgZCbUM1QWZMk4YYYXy5JRylJCeKiZgyI6V9wkjGpOM0aLhBqZGZXyZIyu93u3rv3Yad-JjfVDIdnodudFwrMkzfggTPdC5VrvnTZi6-xGul4QEAMvUYlfXmLgJSATAUwwXh0SpFeyNk42yvo_NyVASUEG3d1ep8O5n1Y74X-o6dI6rTpRtva_qG-mUYKX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35736755</pqid></control><display><type>article</type><title>Very high efficiency triple junction solar cells grown by MOVPE</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Stan, M. ; Aiken, D. ; Cho, B. ; Cornfeld, A. ; Diaz, J. ; Ley, V. ; Korostyshevsky, A. ; Patel, P. ; Sharps, P. ; Varghese, T.</creator><creatorcontrib>Stan, M. ; Aiken, D. ; Cho, B. ; Cornfeld, A. ; Diaz, J. ; Ley, V. ; Korostyshevsky, A. ; Patel, P. ; Sharps, P. ; Varghese, T.</creatorcontrib><description>The GaInP/GaInAs/Ge triple junction (3J) space cell technology is nearing practical achievable conversion efficiency limits of ∼30% under 1-sun AM0 illumination. We present solar cell device-modeling results that indicate the GaInP/GaAs/GaInAs architecture with optimal bandgap energies will produce an additional 4% output power relative to the present GaInP/GaInAs/Ge 3J space cell technology. We have grown the GaInP/GaAs/GaInAs 3J cell on GaAs substrates in an inverted fashion incorporating a 1.0 eV metamorphic GaInAs cell, using metal-organic vapor-phase epitaxy (MOVPE) in a production scale reactor. Nearly strain-free growth of the metamorphic GaInAs cell was verified by high-resolution X-ray reciprocal space mapping. From cathodoluminescence (CL) data, the 1.0 eV metamorphic GaInAs cell threading dislocation density (TDD) is estimated to be 5×10 6 cm −2. With this level of TDDs we are able to produce a 3J IMM cells with a one-sun AM0 efficiency of 32%. In addition, external quantum efficiency (EQE) data suggests that improvements in current matching of the subcells will result in an AM0 efficiency of 33%.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2008.07.024</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. High-resolution X-ray diffraction ; A3. Metal-organic vapor-phase epitaxy ; Applied sciences ; B2. Semiconducting III–V materials ; B3. Solar cells ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Energy ; Exact sciences and technology ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Natural energy ; Photovoltaic conversion ; Physics ; Solar cells. Photoelectrochemical cells ; Solar energy ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Vapor phase epitaxy; growth from vapor phase</subject><ispartof>Journal of crystal growth, 2008-11, Vol.310 (23), p.5204-5208</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-6170d4f008f2a91b4514f59bd4224611550080c1e8c5f342e52742932fa7fc653</citedby><cites>FETCH-LOGICAL-c439t-6170d4f008f2a91b4514f59bd4224611550080c1e8c5f342e52742932fa7fc653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2008.07.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,3551,23932,23933,25142,27926,27927,45997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21021914$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stan, M.</creatorcontrib><creatorcontrib>Aiken, D.</creatorcontrib><creatorcontrib>Cho, B.</creatorcontrib><creatorcontrib>Cornfeld, A.</creatorcontrib><creatorcontrib>Diaz, J.</creatorcontrib><creatorcontrib>Ley, V.</creatorcontrib><creatorcontrib>Korostyshevsky, A.</creatorcontrib><creatorcontrib>Patel, P.</creatorcontrib><creatorcontrib>Sharps, P.</creatorcontrib><creatorcontrib>Varghese, T.</creatorcontrib><title>Very high efficiency triple junction solar cells grown by MOVPE</title><title>Journal of crystal growth</title><description>The GaInP/GaInAs/Ge triple junction (3J) space cell technology is nearing practical achievable conversion efficiency limits of ∼30% under 1-sun AM0 illumination. We present solar cell device-modeling results that indicate the GaInP/GaAs/GaInAs architecture with optimal bandgap energies will produce an additional 4% output power relative to the present GaInP/GaInAs/Ge 3J space cell technology. We have grown the GaInP/GaAs/GaInAs 3J cell on GaAs substrates in an inverted fashion incorporating a 1.0 eV metamorphic GaInAs cell, using metal-organic vapor-phase epitaxy (MOVPE) in a production scale reactor. Nearly strain-free growth of the metamorphic GaInAs cell was verified by high-resolution X-ray reciprocal space mapping. From cathodoluminescence (CL) data, the 1.0 eV metamorphic GaInAs cell threading dislocation density (TDD) is estimated to be 5×10 6 cm −2. With this level of TDDs we are able to produce a 3J IMM cells with a one-sun AM0 efficiency of 32%. In addition, external quantum efficiency (EQE) data suggests that improvements in current matching of the subcells will result in an AM0 efficiency of 33%.</description><subject>A1. High-resolution X-ray diffraction</subject><subject>A3. Metal-organic vapor-phase epitaxy</subject><subject>Applied sciences</subject><subject>B2. Semiconducting III–V materials</subject><subject>B3. Solar cells</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Vapor phase epitaxy; growth from vapor phase</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwF5AvcEtYO3YeJ0BVeUhF5QC9Wq5jt47SpNgpKP8ehxauXLySNbMz-yF0SSAmQNKbKq6U6_3KtTEFyGPIYqDsCI1IniURB6DHaBReGoXv_BSdeV8BBCeBEbpdaNfjtV2tsTbGKqsb1ePO2W2tcbVrVGfbBvu2lg4rXdceh5yvBi97_DJfvE7P0YmRtdcXhzlG7w_Tt8lTNJs_Pk_uZ5FiSdFFKcmgZCbUM1QWZMk4YYYXy5JRylJCeKiZgyI6V9wkjGpOM0aLhBqZGZXyZIyu93u3rv3Yad-JjfVDIdnodudFwrMkzfggTPdC5VrvnTZi6-xGul4QEAMvUYlfXmLgJSATAUwwXh0SpFeyNk42yvo_NyVASUEG3d1ep8O5n1Y74X-o6dI6rTpRtva_qG-mUYKX</recordid><startdate>20081115</startdate><enddate>20081115</enddate><creator>Stan, M.</creator><creator>Aiken, D.</creator><creator>Cho, B.</creator><creator>Cornfeld, A.</creator><creator>Diaz, J.</creator><creator>Ley, V.</creator><creator>Korostyshevsky, A.</creator><creator>Patel, P.</creator><creator>Sharps, P.</creator><creator>Varghese, T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20081115</creationdate><title>Very high efficiency triple junction solar cells grown by MOVPE</title><author>Stan, M. ; Aiken, D. ; Cho, B. ; Cornfeld, A. ; Diaz, J. ; Ley, V. ; Korostyshevsky, A. ; Patel, P. ; Sharps, P. ; Varghese, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-6170d4f008f2a91b4514f59bd4224611550080c1e8c5f342e52742932fa7fc653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>A1. High-resolution X-ray diffraction</topic><topic>A3. Metal-organic vapor-phase epitaxy</topic><topic>Applied sciences</topic><topic>B2. Semiconducting III–V materials</topic><topic>B3. Solar cells</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Vapor phase epitaxy; growth from vapor phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stan, M.</creatorcontrib><creatorcontrib>Aiken, D.</creatorcontrib><creatorcontrib>Cho, B.</creatorcontrib><creatorcontrib>Cornfeld, A.</creatorcontrib><creatorcontrib>Diaz, J.</creatorcontrib><creatorcontrib>Ley, V.</creatorcontrib><creatorcontrib>Korostyshevsky, A.</creatorcontrib><creatorcontrib>Patel, P.</creatorcontrib><creatorcontrib>Sharps, P.</creatorcontrib><creatorcontrib>Varghese, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stan, M.</au><au>Aiken, D.</au><au>Cho, B.</au><au>Cornfeld, A.</au><au>Diaz, J.</au><au>Ley, V.</au><au>Korostyshevsky, A.</au><au>Patel, P.</au><au>Sharps, P.</au><au>Varghese, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Very high efficiency triple junction solar cells grown by MOVPE</atitle><jtitle>Journal of crystal growth</jtitle><date>2008-11-15</date><risdate>2008</risdate><volume>310</volume><issue>23</issue><spage>5204</spage><epage>5208</epage><pages>5204-5208</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>The GaInP/GaInAs/Ge triple junction (3J) space cell technology is nearing practical achievable conversion efficiency limits of ∼30% under 1-sun AM0 illumination. We present solar cell device-modeling results that indicate the GaInP/GaAs/GaInAs architecture with optimal bandgap energies will produce an additional 4% output power relative to the present GaInP/GaInAs/Ge 3J space cell technology. We have grown the GaInP/GaAs/GaInAs 3J cell on GaAs substrates in an inverted fashion incorporating a 1.0 eV metamorphic GaInAs cell, using metal-organic vapor-phase epitaxy (MOVPE) in a production scale reactor. Nearly strain-free growth of the metamorphic GaInAs cell was verified by high-resolution X-ray reciprocal space mapping. From cathodoluminescence (CL) data, the 1.0 eV metamorphic GaInAs cell threading dislocation density (TDD) is estimated to be 5×10 6 cm −2. With this level of TDDs we are able to produce a 3J IMM cells with a one-sun AM0 efficiency of 32%. In addition, external quantum efficiency (EQE) data suggests that improvements in current matching of the subcells will result in an AM0 efficiency of 33%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2008.07.024</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2008-11, Vol.310 (23), p.5204-5208
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_35736755
source Elsevier ScienceDirect Journals Complete
subjects A1. High-resolution X-ray diffraction
A3. Metal-organic vapor-phase epitaxy
Applied sciences
B2. Semiconducting III–V materials
B3. Solar cells
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Energy
Exact sciences and technology
Materials science
Methods of crystal growth
physics of crystal growth
Methods of deposition of films and coatings
film growth and epitaxy
Natural energy
Photovoltaic conversion
Physics
Solar cells. Photoelectrochemical cells
Solar energy
Structure of solids and liquids
crystallography
Structure of specific crystalline solids
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
Vapor phase epitaxy
growth from vapor phase
title Very high efficiency triple junction solar cells grown by MOVPE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Very%20high%20efficiency%20triple%20junction%20solar%20cells%20grown%20by%20MOVPE&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Stan,%20M.&rft.date=2008-11-15&rft.volume=310&rft.issue=23&rft.spage=5204&rft.epage=5208&rft.pages=5204-5208&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2008.07.024&rft_dat=%3Cproquest_cross%3E35736755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35736755&rft_id=info:pmid/&rft_els_id=S002202480800599X&rfr_iscdi=true