Very high efficiency triple junction solar cells grown by MOVPE
The GaInP/GaInAs/Ge triple junction (3J) space cell technology is nearing practical achievable conversion efficiency limits of ∼30% under 1-sun AM0 illumination. We present solar cell device-modeling results that indicate the GaInP/GaAs/GaInAs architecture with optimal bandgap energies will produce...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2008-11, Vol.310 (23), p.5204-5208 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5208 |
---|---|
container_issue | 23 |
container_start_page | 5204 |
container_title | Journal of crystal growth |
container_volume | 310 |
creator | Stan, M. Aiken, D. Cho, B. Cornfeld, A. Diaz, J. Ley, V. Korostyshevsky, A. Patel, P. Sharps, P. Varghese, T. |
description | The GaInP/GaInAs/Ge triple junction (3J) space cell technology is nearing practical achievable conversion efficiency limits of ∼30% under 1-sun AM0 illumination. We present solar cell device-modeling results that indicate the GaInP/GaAs/GaInAs architecture with optimal bandgap energies will produce an additional 4% output power relative to the present GaInP/GaInAs/Ge 3J space cell technology. We have grown the GaInP/GaAs/GaInAs 3J cell on GaAs substrates in an inverted fashion incorporating a 1.0
eV metamorphic GaInAs cell, using metal-organic vapor-phase epitaxy (MOVPE) in a production scale reactor. Nearly strain-free growth of the metamorphic GaInAs cell was verified by high-resolution X-ray reciprocal space mapping. From cathodoluminescence (CL) data, the 1.0
eV metamorphic GaInAs cell threading dislocation density (TDD) is estimated to be 5×10
6
cm
−2. With this level of TDDs we are able to produce a 3J IMM cells with a one-sun AM0 efficiency of 32%. In addition, external quantum efficiency (EQE) data suggests that improvements in current matching of the subcells will result in an AM0 efficiency of 33%. |
doi_str_mv | 10.1016/j.jcrysgro.2008.07.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35736755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002202480800599X</els_id><sourcerecordid>35736755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-6170d4f008f2a91b4514f59bd4224611550080c1e8c5f342e52742932fa7fc653</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwF5AvcEtYO3YeJ0BVeUhF5QC9Wq5jt47SpNgpKP8ehxauXLySNbMz-yF0SSAmQNKbKq6U6_3KtTEFyGPIYqDsCI1IniURB6DHaBReGoXv_BSdeV8BBCeBEbpdaNfjtV2tsTbGKqsb1ePO2W2tcbVrVGfbBvu2lg4rXdceh5yvBi97_DJfvE7P0YmRtdcXhzlG7w_Tt8lTNJs_Pk_uZ5FiSdFFKcmgZCbUM1QWZMk4YYYXy5JRylJCeKiZgyI6V9wkjGpOM0aLhBqZGZXyZIyu93u3rv3Yad-JjfVDIdnodudFwrMkzfggTPdC5VrvnTZi6-xGul4QEAMvUYlfXmLgJSATAUwwXh0SpFeyNk42yvo_NyVASUEG3d1ep8O5n1Y74X-o6dI6rTpRtva_qG-mUYKX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35736755</pqid></control><display><type>article</type><title>Very high efficiency triple junction solar cells grown by MOVPE</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Stan, M. ; Aiken, D. ; Cho, B. ; Cornfeld, A. ; Diaz, J. ; Ley, V. ; Korostyshevsky, A. ; Patel, P. ; Sharps, P. ; Varghese, T.</creator><creatorcontrib>Stan, M. ; Aiken, D. ; Cho, B. ; Cornfeld, A. ; Diaz, J. ; Ley, V. ; Korostyshevsky, A. ; Patel, P. ; Sharps, P. ; Varghese, T.</creatorcontrib><description>The GaInP/GaInAs/Ge triple junction (3J) space cell technology is nearing practical achievable conversion efficiency limits of ∼30% under 1-sun AM0 illumination. We present solar cell device-modeling results that indicate the GaInP/GaAs/GaInAs architecture with optimal bandgap energies will produce an additional 4% output power relative to the present GaInP/GaInAs/Ge 3J space cell technology. We have grown the GaInP/GaAs/GaInAs 3J cell on GaAs substrates in an inverted fashion incorporating a 1.0
eV metamorphic GaInAs cell, using metal-organic vapor-phase epitaxy (MOVPE) in a production scale reactor. Nearly strain-free growth of the metamorphic GaInAs cell was verified by high-resolution X-ray reciprocal space mapping. From cathodoluminescence (CL) data, the 1.0
eV metamorphic GaInAs cell threading dislocation density (TDD) is estimated to be 5×10
6
cm
−2. With this level of TDDs we are able to produce a 3J IMM cells with a one-sun AM0 efficiency of 32%. In addition, external quantum efficiency (EQE) data suggests that improvements in current matching of the subcells will result in an AM0 efficiency of 33%.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2008.07.024</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. High-resolution X-ray diffraction ; A3. Metal-organic vapor-phase epitaxy ; Applied sciences ; B2. Semiconducting III–V materials ; B3. Solar cells ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Energy ; Exact sciences and technology ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Natural energy ; Photovoltaic conversion ; Physics ; Solar cells. Photoelectrochemical cells ; Solar energy ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Vapor phase epitaxy; growth from vapor phase</subject><ispartof>Journal of crystal growth, 2008-11, Vol.310 (23), p.5204-5208</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-6170d4f008f2a91b4514f59bd4224611550080c1e8c5f342e52742932fa7fc653</citedby><cites>FETCH-LOGICAL-c439t-6170d4f008f2a91b4514f59bd4224611550080c1e8c5f342e52742932fa7fc653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2008.07.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,3551,23932,23933,25142,27926,27927,45997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21021914$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stan, M.</creatorcontrib><creatorcontrib>Aiken, D.</creatorcontrib><creatorcontrib>Cho, B.</creatorcontrib><creatorcontrib>Cornfeld, A.</creatorcontrib><creatorcontrib>Diaz, J.</creatorcontrib><creatorcontrib>Ley, V.</creatorcontrib><creatorcontrib>Korostyshevsky, A.</creatorcontrib><creatorcontrib>Patel, P.</creatorcontrib><creatorcontrib>Sharps, P.</creatorcontrib><creatorcontrib>Varghese, T.</creatorcontrib><title>Very high efficiency triple junction solar cells grown by MOVPE</title><title>Journal of crystal growth</title><description>The GaInP/GaInAs/Ge triple junction (3J) space cell technology is nearing practical achievable conversion efficiency limits of ∼30% under 1-sun AM0 illumination. We present solar cell device-modeling results that indicate the GaInP/GaAs/GaInAs architecture with optimal bandgap energies will produce an additional 4% output power relative to the present GaInP/GaInAs/Ge 3J space cell technology. We have grown the GaInP/GaAs/GaInAs 3J cell on GaAs substrates in an inverted fashion incorporating a 1.0
eV metamorphic GaInAs cell, using metal-organic vapor-phase epitaxy (MOVPE) in a production scale reactor. Nearly strain-free growth of the metamorphic GaInAs cell was verified by high-resolution X-ray reciprocal space mapping. From cathodoluminescence (CL) data, the 1.0
eV metamorphic GaInAs cell threading dislocation density (TDD) is estimated to be 5×10
6
cm
−2. With this level of TDDs we are able to produce a 3J IMM cells with a one-sun AM0 efficiency of 32%. In addition, external quantum efficiency (EQE) data suggests that improvements in current matching of the subcells will result in an AM0 efficiency of 33%.</description><subject>A1. High-resolution X-ray diffraction</subject><subject>A3. Metal-organic vapor-phase epitaxy</subject><subject>Applied sciences</subject><subject>B2. Semiconducting III–V materials</subject><subject>B3. Solar cells</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Vapor phase epitaxy; growth from vapor phase</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwF5AvcEtYO3YeJ0BVeUhF5QC9Wq5jt47SpNgpKP8ehxauXLySNbMz-yF0SSAmQNKbKq6U6_3KtTEFyGPIYqDsCI1IniURB6DHaBReGoXv_BSdeV8BBCeBEbpdaNfjtV2tsTbGKqsb1ePO2W2tcbVrVGfbBvu2lg4rXdceh5yvBi97_DJfvE7P0YmRtdcXhzlG7w_Tt8lTNJs_Pk_uZ5FiSdFFKcmgZCbUM1QWZMk4YYYXy5JRylJCeKiZgyI6V9wkjGpOM0aLhBqZGZXyZIyu93u3rv3Yad-JjfVDIdnodudFwrMkzfggTPdC5VrvnTZi6-xGul4QEAMvUYlfXmLgJSATAUwwXh0SpFeyNk42yvo_NyVASUEG3d1ep8O5n1Y74X-o6dI6rTpRtva_qG-mUYKX</recordid><startdate>20081115</startdate><enddate>20081115</enddate><creator>Stan, M.</creator><creator>Aiken, D.</creator><creator>Cho, B.</creator><creator>Cornfeld, A.</creator><creator>Diaz, J.</creator><creator>Ley, V.</creator><creator>Korostyshevsky, A.</creator><creator>Patel, P.</creator><creator>Sharps, P.</creator><creator>Varghese, T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20081115</creationdate><title>Very high efficiency triple junction solar cells grown by MOVPE</title><author>Stan, M. ; Aiken, D. ; Cho, B. ; Cornfeld, A. ; Diaz, J. ; Ley, V. ; Korostyshevsky, A. ; Patel, P. ; Sharps, P. ; Varghese, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-6170d4f008f2a91b4514f59bd4224611550080c1e8c5f342e52742932fa7fc653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>A1. High-resolution X-ray diffraction</topic><topic>A3. Metal-organic vapor-phase epitaxy</topic><topic>Applied sciences</topic><topic>B2. Semiconducting III–V materials</topic><topic>B3. Solar cells</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Vapor phase epitaxy; growth from vapor phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stan, M.</creatorcontrib><creatorcontrib>Aiken, D.</creatorcontrib><creatorcontrib>Cho, B.</creatorcontrib><creatorcontrib>Cornfeld, A.</creatorcontrib><creatorcontrib>Diaz, J.</creatorcontrib><creatorcontrib>Ley, V.</creatorcontrib><creatorcontrib>Korostyshevsky, A.</creatorcontrib><creatorcontrib>Patel, P.</creatorcontrib><creatorcontrib>Sharps, P.</creatorcontrib><creatorcontrib>Varghese, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stan, M.</au><au>Aiken, D.</au><au>Cho, B.</au><au>Cornfeld, A.</au><au>Diaz, J.</au><au>Ley, V.</au><au>Korostyshevsky, A.</au><au>Patel, P.</au><au>Sharps, P.</au><au>Varghese, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Very high efficiency triple junction solar cells grown by MOVPE</atitle><jtitle>Journal of crystal growth</jtitle><date>2008-11-15</date><risdate>2008</risdate><volume>310</volume><issue>23</issue><spage>5204</spage><epage>5208</epage><pages>5204-5208</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>The GaInP/GaInAs/Ge triple junction (3J) space cell technology is nearing practical achievable conversion efficiency limits of ∼30% under 1-sun AM0 illumination. We present solar cell device-modeling results that indicate the GaInP/GaAs/GaInAs architecture with optimal bandgap energies will produce an additional 4% output power relative to the present GaInP/GaInAs/Ge 3J space cell technology. We have grown the GaInP/GaAs/GaInAs 3J cell on GaAs substrates in an inverted fashion incorporating a 1.0
eV metamorphic GaInAs cell, using metal-organic vapor-phase epitaxy (MOVPE) in a production scale reactor. Nearly strain-free growth of the metamorphic GaInAs cell was verified by high-resolution X-ray reciprocal space mapping. From cathodoluminescence (CL) data, the 1.0
eV metamorphic GaInAs cell threading dislocation density (TDD) is estimated to be 5×10
6
cm
−2. With this level of TDDs we are able to produce a 3J IMM cells with a one-sun AM0 efficiency of 32%. In addition, external quantum efficiency (EQE) data suggests that improvements in current matching of the subcells will result in an AM0 efficiency of 33%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2008.07.024</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2008-11, Vol.310 (23), p.5204-5208 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_35736755 |
source | Elsevier ScienceDirect Journals Complete |
subjects | A1. High-resolution X-ray diffraction A3. Metal-organic vapor-phase epitaxy Applied sciences B2. Semiconducting III–V materials B3. Solar cells Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Energy Exact sciences and technology Materials science Methods of crystal growth physics of crystal growth Methods of deposition of films and coatings film growth and epitaxy Natural energy Photovoltaic conversion Physics Solar cells. Photoelectrochemical cells Solar energy Structure of solids and liquids crystallography Structure of specific crystalline solids Theory and models of crystal growth physics of crystal growth, crystal morphology and orientation Vapor phase epitaxy growth from vapor phase |
title | Very high efficiency triple junction solar cells grown by MOVPE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Very%20high%20efficiency%20triple%20junction%20solar%20cells%20grown%20by%20MOVPE&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Stan,%20M.&rft.date=2008-11-15&rft.volume=310&rft.issue=23&rft.spage=5204&rft.epage=5208&rft.pages=5204-5208&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2008.07.024&rft_dat=%3Cproquest_cross%3E35736755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35736755&rft_id=info:pmid/&rft_els_id=S002202480800599X&rfr_iscdi=true |