The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching
We numerically analyze ultra-refraction and slow-light in lithium niobate photonic crystals in order to investigate and then optimize the efficiency of a tunable photonic crystal superprism. In contrast to a passive superprism 1-to-N demultiplexer, we describe a tunable bandpass filter with only thr...
Gespeichert in:
Veröffentlicht in: | Photonics and nanostructures 2008-04, Vol.6 (1), p.47-59 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 1 |
container_start_page | 47 |
container_title | Photonics and nanostructures |
container_volume | 6 |
creator | Amet, J. Baida, F.I. Burr, G.W. Bernal, M.-P. |
description | We numerically analyze ultra-refraction and slow-light in lithium niobate photonic crystals in order to investigate and then optimize the efficiency of a tunable photonic crystal superprism. In contrast to a passive superprism 1-to-N demultiplexer, we describe a tunable bandpass filter with only three output ports. The electro-optic effect in lithium niobate is used to achieve tunability, with the filter bandwidth shifting in wavelength as the refractive index of the superprism is modified by an externally applied electric field. Such a device could be used to realize a compact and fast wavelength multiplexer/demultiplexer for telecommunications or optical interconnect applications. We calculate constant frequency dispersion contours (plane-wave expansion) to identify initial configurations that show significant ultra-refraction, and verify the expected behavior of light propagation inside the structure using 2D FDTD (finite difference time domain) simulations. We show that the voltage requirements of such an electro-optically tunable superprism could potentially be relaxed by exploiting the enhancement of the electro-optic effect recently discovered by our group [M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F.I. Baida, Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons. Appl. Phys. Lett. 89 (24) (2006) 241110], which we believe to be due to the presence of slow-light in the nanostructure. We present a methodology that readily identifies superprism design points showing both strong ultra-refraction as well as low group velocity. However, we find that this improved voltage efficiency comes at the cost of reduced operating bandwidth and increased insertion losses due to proximity to the band-edge. |
doi_str_mv | 10.1016/j.photonics.2007.09.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_35697434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1569441007000417</els_id><sourcerecordid>35697434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-348e21c8f01279fb05e4f3387b95515dd7c8840f9a71fa3703a5f127dec93f953</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhU1poGmS3xBdWijUzsiSV9ZxCWkSWMglOQutPKq12JYrySn599Gym73mpEF87z3mTVFcU6go0NXNrpp7n_zkTKxqAFGBrADqL8U5bVay5LyWX08zhW_F9xh3AIyt6Oq8CM89krjMGObg4kjQWjSJuIkMLvVuGcnk_FYnJB8pxIS3mPQQifWBLEMKurQ6pt_H2fhx1tkCh2wUfOnn5IweSPzvkund9PeyOLNZjlfH96J4-XP3fPtQbp7uH2_Xm9LwRqaS8RZraloLtBbSbqFBbhlrxVY2DW26Tpi25WClFtRqJoDpxma0QyOZlQ27KH4dfHs9qLzdqMOb8tqph_VG7f8AuMx-8Eoz-_PAzsH_WzAmNbpocBj0hH6JiuX6BGc8g-IAmuBjDGhPzhTU_h5qp073UPt7KJA5qc7KH8cIHXMfNujJuHiS18BaymqRufWBw9zNq8OgonE4GexcyI2qzrtPs94BL4Km4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35697434</pqid></control><display><type>article</type><title>The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching</title><source>Access via ScienceDirect (Elsevier)</source><creator>Amet, J. ; Baida, F.I. ; Burr, G.W. ; Bernal, M.-P.</creator><creatorcontrib>Amet, J. ; Baida, F.I. ; Burr, G.W. ; Bernal, M.-P.</creatorcontrib><description>We numerically analyze ultra-refraction and slow-light in lithium niobate photonic crystals in order to investigate and then optimize the efficiency of a tunable photonic crystal superprism. In contrast to a passive superprism 1-to-N demultiplexer, we describe a tunable bandpass filter with only three output ports. The electro-optic effect in lithium niobate is used to achieve tunability, with the filter bandwidth shifting in wavelength as the refractive index of the superprism is modified by an externally applied electric field. Such a device could be used to realize a compact and fast wavelength multiplexer/demultiplexer for telecommunications or optical interconnect applications. We calculate constant frequency dispersion contours (plane-wave expansion) to identify initial configurations that show significant ultra-refraction, and verify the expected behavior of light propagation inside the structure using 2D FDTD (finite difference time domain) simulations. We show that the voltage requirements of such an electro-optically tunable superprism could potentially be relaxed by exploiting the enhancement of the electro-optic effect recently discovered by our group [M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F.I. Baida, Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons. Appl. Phys. Lett. 89 (24) (2006) 241110], which we believe to be due to the presence of slow-light in the nanostructure. We present a methodology that readily identifies superprism design points showing both strong ultra-refraction as well as low group velocity. However, we find that this improved voltage efficiency comes at the cost of reduced operating bandwidth and increased insertion losses due to proximity to the band-edge.</description><identifier>ISSN: 1569-4410</identifier><identifier>EISSN: 1569-4429</identifier><identifier>DOI: 10.1016/j.photonics.2007.09.002</identifier><language>eng</language><publisher>New York: Elsevier B.V</publisher><subject>Applied sciences ; Electro-optic effect ; Engineering Sciences ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Lithium niobate ; Nonlinear optics ; Optical bistability, multistability and switching, including local field effects ; Optical computers, logic elements, interconnects, switches; neural networks ; Optical elements, devices, and systems ; Optical materials ; Optical telecommunications ; Optics ; Photonic ; Photonic bandgap materials ; Photonic crystals ; Physics ; Superprism effect ; Telecommunications ; Telecommunications and information theory</subject><ispartof>Photonics and nanostructures, 2008-04, Vol.6 (1), p.47-59</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><rights>Attribution</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-348e21c8f01279fb05e4f3387b95515dd7c8840f9a71fa3703a5f127dec93f953</citedby><cites>FETCH-LOGICAL-c459t-348e21c8f01279fb05e4f3387b95515dd7c8840f9a71fa3703a5f127dec93f953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.photonics.2007.09.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20381327$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00493870$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Amet, J.</creatorcontrib><creatorcontrib>Baida, F.I.</creatorcontrib><creatorcontrib>Burr, G.W.</creatorcontrib><creatorcontrib>Bernal, M.-P.</creatorcontrib><title>The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching</title><title>Photonics and nanostructures</title><description>We numerically analyze ultra-refraction and slow-light in lithium niobate photonic crystals in order to investigate and then optimize the efficiency of a tunable photonic crystal superprism. In contrast to a passive superprism 1-to-N demultiplexer, we describe a tunable bandpass filter with only three output ports. The electro-optic effect in lithium niobate is used to achieve tunability, with the filter bandwidth shifting in wavelength as the refractive index of the superprism is modified by an externally applied electric field. Such a device could be used to realize a compact and fast wavelength multiplexer/demultiplexer for telecommunications or optical interconnect applications. We calculate constant frequency dispersion contours (plane-wave expansion) to identify initial configurations that show significant ultra-refraction, and verify the expected behavior of light propagation inside the structure using 2D FDTD (finite difference time domain) simulations. We show that the voltage requirements of such an electro-optically tunable superprism could potentially be relaxed by exploiting the enhancement of the electro-optic effect recently discovered by our group [M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F.I. Baida, Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons. Appl. Phys. Lett. 89 (24) (2006) 241110], which we believe to be due to the presence of slow-light in the nanostructure. We present a methodology that readily identifies superprism design points showing both strong ultra-refraction as well as low group velocity. However, we find that this improved voltage efficiency comes at the cost of reduced operating bandwidth and increased insertion losses due to proximity to the band-edge.</description><subject>Applied sciences</subject><subject>Electro-optic effect</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lithium niobate</subject><subject>Nonlinear optics</subject><subject>Optical bistability, multistability and switching, including local field effects</subject><subject>Optical computers, logic elements, interconnects, switches; neural networks</subject><subject>Optical elements, devices, and systems</subject><subject>Optical materials</subject><subject>Optical telecommunications</subject><subject>Optics</subject><subject>Photonic</subject><subject>Photonic bandgap materials</subject><subject>Photonic crystals</subject><subject>Physics</subject><subject>Superprism effect</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><issn>1569-4410</issn><issn>1569-4429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkUFr3DAQhU1poGmS3xBdWijUzsiSV9ZxCWkSWMglOQutPKq12JYrySn599Gym73mpEF87z3mTVFcU6go0NXNrpp7n_zkTKxqAFGBrADqL8U5bVay5LyWX08zhW_F9xh3AIyt6Oq8CM89krjMGObg4kjQWjSJuIkMLvVuGcnk_FYnJB8pxIS3mPQQifWBLEMKurQ6pt_H2fhx1tkCh2wUfOnn5IweSPzvkund9PeyOLNZjlfH96J4-XP3fPtQbp7uH2_Xm9LwRqaS8RZraloLtBbSbqFBbhlrxVY2DW26Tpi25WClFtRqJoDpxma0QyOZlQ27KH4dfHs9qLzdqMOb8tqph_VG7f8AuMx-8Eoz-_PAzsH_WzAmNbpocBj0hH6JiuX6BGc8g-IAmuBjDGhPzhTU_h5qp073UPt7KJA5qc7KH8cIHXMfNujJuHiS18BaymqRufWBw9zNq8OgonE4GexcyI2qzrtPs94BL4Km4g</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Amet, J.</creator><creator>Baida, F.I.</creator><creator>Burr, G.W.</creator><creator>Bernal, M.-P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20080401</creationdate><title>The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching</title><author>Amet, J. ; Baida, F.I. ; Burr, G.W. ; Bernal, M.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-348e21c8f01279fb05e4f3387b95515dd7c8840f9a71fa3703a5f127dec93f953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Electro-optic effect</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lithium niobate</topic><topic>Nonlinear optics</topic><topic>Optical bistability, multistability and switching, including local field effects</topic><topic>Optical computers, logic elements, interconnects, switches; neural networks</topic><topic>Optical elements, devices, and systems</topic><topic>Optical materials</topic><topic>Optical telecommunications</topic><topic>Optics</topic><topic>Photonic</topic><topic>Photonic bandgap materials</topic><topic>Photonic crystals</topic><topic>Physics</topic><topic>Superprism effect</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Amet, J.</creatorcontrib><creatorcontrib>Baida, F.I.</creatorcontrib><creatorcontrib>Burr, G.W.</creatorcontrib><creatorcontrib>Bernal, M.-P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Photonics and nanostructures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amet, J.</au><au>Baida, F.I.</au><au>Burr, G.W.</au><au>Bernal, M.-P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching</atitle><jtitle>Photonics and nanostructures</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>6</volume><issue>1</issue><spage>47</spage><epage>59</epage><pages>47-59</pages><issn>1569-4410</issn><eissn>1569-4429</eissn><abstract>We numerically analyze ultra-refraction and slow-light in lithium niobate photonic crystals in order to investigate and then optimize the efficiency of a tunable photonic crystal superprism. In contrast to a passive superprism 1-to-N demultiplexer, we describe a tunable bandpass filter with only three output ports. The electro-optic effect in lithium niobate is used to achieve tunability, with the filter bandwidth shifting in wavelength as the refractive index of the superprism is modified by an externally applied electric field. Such a device could be used to realize a compact and fast wavelength multiplexer/demultiplexer for telecommunications or optical interconnect applications. We calculate constant frequency dispersion contours (plane-wave expansion) to identify initial configurations that show significant ultra-refraction, and verify the expected behavior of light propagation inside the structure using 2D FDTD (finite difference time domain) simulations. We show that the voltage requirements of such an electro-optically tunable superprism could potentially be relaxed by exploiting the enhancement of the electro-optic effect recently discovered by our group [M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F.I. Baida, Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons. Appl. Phys. Lett. 89 (24) (2006) 241110], which we believe to be due to the presence of slow-light in the nanostructure. We present a methodology that readily identifies superprism design points showing both strong ultra-refraction as well as low group velocity. However, we find that this improved voltage efficiency comes at the cost of reduced operating bandwidth and increased insertion losses due to proximity to the band-edge.</abstract><cop>New York</cop><cop>San Diego</cop><cop>Amsterdam</cop><cop>Tokyo</cop><cop>London</cop><cop>Shannon</cop><cop>St. Louis</cop><cop>Oxford</cop><cop>Paris</cop><cop>Philadelphia</cop><cop>Boston</cop><pub>Elsevier B.V</pub><doi>10.1016/j.photonics.2007.09.002</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-4410 |
ispartof | Photonics and nanostructures, 2008-04, Vol.6 (1), p.47-59 |
issn | 1569-4410 1569-4429 |
language | eng |
recordid | cdi_proquest_miscellaneous_35697434 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Electro-optic effect Engineering Sciences Exact sciences and technology Fundamental areas of phenomenology (including applications) Lithium niobate Nonlinear optics Optical bistability, multistability and switching, including local field effects Optical computers, logic elements, interconnects, switches neural networks Optical elements, devices, and systems Optical materials Optical telecommunications Optics Photonic Photonic bandgap materials Photonic crystals Physics Superprism effect Telecommunications Telecommunications and information theory |
title | The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20superprism%20effect%20in%20lithium%20niobate%20photonic%20crystals%20for%20ultra-fast,%20ultra-compact%20electro-optical%20switching&rft.jtitle=Photonics%20and%20nanostructures&rft.au=Amet,%20J.&rft.date=2008-04-01&rft.volume=6&rft.issue=1&rft.spage=47&rft.epage=59&rft.pages=47-59&rft.issn=1569-4410&rft.eissn=1569-4429&rft_id=info:doi/10.1016/j.photonics.2007.09.002&rft_dat=%3Cproquest_hal_p%3E35697434%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35697434&rft_id=info:pmid/&rft_els_id=S1569441007000417&rfr_iscdi=true |