The Hardy inequality and nonlinear parabolic equations on Carnot groups

In this paper we shall investigate the nonexistence of positive solutions for the following nonlinear parabolic partial differential equation: { ∂ u ∂ t = Δ G , p u + V ( x ) u p − 1 in Ω × ( 0 , T ) , 1 < p < 2 , u ( x , 0 ) = u 0 ( x ) ≥ 0 in Ω , u ( x , t ) = 0 on ∂ Ω × ( 0 , T ) , where Δ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2008-12, Vol.69 (12), p.4643-4653
Hauptverfasser: Goldstein, Jerome A., Kombe, Ismail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4653
container_issue 12
container_start_page 4643
container_title Nonlinear analysis
container_volume 69
creator Goldstein, Jerome A.
Kombe, Ismail
description In this paper we shall investigate the nonexistence of positive solutions for the following nonlinear parabolic partial differential equation: { ∂ u ∂ t = Δ G , p u + V ( x ) u p − 1 in Ω × ( 0 , T ) , 1 < p < 2 , u ( x , 0 ) = u 0 ( x ) ≥ 0 in Ω , u ( x , t ) = 0 on ∂ Ω × ( 0 , T ) , where Δ G , p is the p -sub-Laplacian on a Carnot group G and V ∈ L loc 1 ( Ω ) .
doi_str_mv 10.1016/j.na.2007.11.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35689603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X07007742</els_id><sourcerecordid>35689603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-a2f942ded0ce036434f831a8d95f10491233b934ce326160b70296da64d3b8993</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqWwM3qBLeFsJ07ChipokSqxFInNutoOuErt1E6R-u9JVcTGdNLpe-_ePUJuGeQMmHzY5B5zDlDljOXA4YxMWF2JrOSsPCcTEJJnZSE_LslVShsAYJWQEzJffVm6wGgO1Hm722PnhgNFb6gPvhtXGGmPEdehc5oegcEFn2jwdIbRh4F-xrDv0zW5aLFL9uZ3Tsn7y_NqtsiWb_PX2dMy04UUQ4a8bQpurAFtx0iFKNpaMKxNU7YMioZxIdaNKLQVXDIJ6wp4Iw3Kwoh13TRiSu5Pvn0Mu71Ng9q6pG3Xobdhn5QoZd1IECMIJ1DHkFK0reqj22I8KAbq2JjaKI_q2JhiTI2NjZK7X29MGrs2otcu_ek41GN2cczweOLs-Oi3s1El7azX1rho9aBMcP8f-QH7on7j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35689603</pqid></control><display><type>article</type><title>The Hardy inequality and nonlinear parabolic equations on Carnot groups</title><source>Elsevier ScienceDirect Journals</source><creator>Goldstein, Jerome A. ; Kombe, Ismail</creator><creatorcontrib>Goldstein, Jerome A. ; Kombe, Ismail</creatorcontrib><description>In this paper we shall investigate the nonexistence of positive solutions for the following nonlinear parabolic partial differential equation: { ∂ u ∂ t = Δ G , p u + V ( x ) u p − 1 in Ω × ( 0 , T ) , 1 &lt; p &lt; 2 , u ( x , 0 ) = u 0 ( x ) ≥ 0 in Ω , u ( x , t ) = 0 on ∂ Ω × ( 0 , T ) , where Δ G , p is the p -sub-Laplacian on a Carnot group G and V ∈ L loc 1 ( Ω ) .</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2007.11.020</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Hardy-type inequality ; Mathematical analysis ; Mathematics ; Nonlinear parabolic equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Positive solutions ; Sciences and techniques of general use</subject><ispartof>Nonlinear analysis, 2008-12, Vol.69 (12), p.4643-4653</ispartof><rights>2007 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-a2f942ded0ce036434f831a8d95f10491233b934ce326160b70296da64d3b8993</citedby><cites>FETCH-LOGICAL-c463t-a2f942ded0ce036434f831a8d95f10491233b934ce326160b70296da64d3b8993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2007.11.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20894239$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldstein, Jerome A.</creatorcontrib><creatorcontrib>Kombe, Ismail</creatorcontrib><title>The Hardy inequality and nonlinear parabolic equations on Carnot groups</title><title>Nonlinear analysis</title><description>In this paper we shall investigate the nonexistence of positive solutions for the following nonlinear parabolic partial differential equation: { ∂ u ∂ t = Δ G , p u + V ( x ) u p − 1 in Ω × ( 0 , T ) , 1 &lt; p &lt; 2 , u ( x , 0 ) = u 0 ( x ) ≥ 0 in Ω , u ( x , t ) = 0 on ∂ Ω × ( 0 , T ) , where Δ G , p is the p -sub-Laplacian on a Carnot group G and V ∈ L loc 1 ( Ω ) .</description><subject>Exact sciences and technology</subject><subject>Hardy-type inequality</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonlinear parabolic equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Positive solutions</subject><subject>Sciences and techniques of general use</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqWwM3qBLeFsJ07ChipokSqxFInNutoOuErt1E6R-u9JVcTGdNLpe-_ePUJuGeQMmHzY5B5zDlDljOXA4YxMWF2JrOSsPCcTEJJnZSE_LslVShsAYJWQEzJffVm6wGgO1Hm722PnhgNFb6gPvhtXGGmPEdehc5oegcEFn2jwdIbRh4F-xrDv0zW5aLFL9uZ3Tsn7y_NqtsiWb_PX2dMy04UUQ4a8bQpurAFtx0iFKNpaMKxNU7YMioZxIdaNKLQVXDIJ6wp4Iw3Kwoh13TRiSu5Pvn0Mu71Ng9q6pG3Xobdhn5QoZd1IECMIJ1DHkFK0reqj22I8KAbq2JjaKI_q2JhiTI2NjZK7X29MGrs2otcu_ek41GN2cczweOLs-Oi3s1El7azX1rho9aBMcP8f-QH7on7j</recordid><startdate>20081215</startdate><enddate>20081215</enddate><creator>Goldstein, Jerome A.</creator><creator>Kombe, Ismail</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20081215</creationdate><title>The Hardy inequality and nonlinear parabolic equations on Carnot groups</title><author>Goldstein, Jerome A. ; Kombe, Ismail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-a2f942ded0ce036434f831a8d95f10491233b934ce326160b70296da64d3b8993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Exact sciences and technology</topic><topic>Hardy-type inequality</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonlinear parabolic equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Positive solutions</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldstein, Jerome A.</creatorcontrib><creatorcontrib>Kombe, Ismail</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldstein, Jerome A.</au><au>Kombe, Ismail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hardy inequality and nonlinear parabolic equations on Carnot groups</atitle><jtitle>Nonlinear analysis</jtitle><date>2008-12-15</date><risdate>2008</risdate><volume>69</volume><issue>12</issue><spage>4643</spage><epage>4653</epage><pages>4643-4653</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>In this paper we shall investigate the nonexistence of positive solutions for the following nonlinear parabolic partial differential equation: { ∂ u ∂ t = Δ G , p u + V ( x ) u p − 1 in Ω × ( 0 , T ) , 1 &lt; p &lt; 2 , u ( x , 0 ) = u 0 ( x ) ≥ 0 in Ω , u ( x , t ) = 0 on ∂ Ω × ( 0 , T ) , where Δ G , p is the p -sub-Laplacian on a Carnot group G and V ∈ L loc 1 ( Ω ) .</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2007.11.020</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2008-12, Vol.69 (12), p.4643-4653
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_35689603
source Elsevier ScienceDirect Journals
subjects Exact sciences and technology
Hardy-type inequality
Mathematical analysis
Mathematics
Nonlinear parabolic equations
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations
Partial differential equations, boundary value problems
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Positive solutions
Sciences and techniques of general use
title The Hardy inequality and nonlinear parabolic equations on Carnot groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hardy%20inequality%20and%20nonlinear%20parabolic%20equations%20on%20Carnot%20groups&rft.jtitle=Nonlinear%20analysis&rft.au=Goldstein,%20Jerome%20A.&rft.date=2008-12-15&rft.volume=69&rft.issue=12&rft.spage=4643&rft.epage=4653&rft.pages=4643-4653&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2007.11.020&rft_dat=%3Cproquest_cross%3E35689603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35689603&rft_id=info:pmid/&rft_els_id=S0362546X07007742&rfr_iscdi=true