The investigation of groove geometry effect on heat transfer for internally grooved tubes

An experimental study of surface heat transfer and friction characteristics of a fully developed turbulent air flow in different grooved tubes is reported. Tests were performed for Reynolds number range 10,000–38,000 and for different geometric groove shapes (circular, trapezoidal and rectangular)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2009-03, Vol.29 (4), p.753-761
Hauptverfasser: Bilen, Kadir, Cetin, Murat, Gul, Hasan, Balta, Tuba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 761
container_issue 4
container_start_page 753
container_title Applied thermal engineering
container_volume 29
creator Bilen, Kadir
Cetin, Murat
Gul, Hasan
Balta, Tuba
description An experimental study of surface heat transfer and friction characteristics of a fully developed turbulent air flow in different grooved tubes is reported. Tests were performed for Reynolds number range 10,000–38,000 and for different geometric groove shapes (circular, trapezoidal and rectangular). The ratio of tube length-to-diameter is 33. Among the grooved tubes, heat transfer enhancement is obtained up to 63% for circular groove, 58% for trapezoidal groove and 47% for rectangular groove, in comparison with the smooth tube at the highest Reynolds number ( Re = 38,000). Correlations of heat transfer and friction coefficient were obtained for different grooved tubes. In evaluation of thermal performance, it is seen that the grooved tubes are thermodynamically advantageous ( Ns, a < 1) up to Re = 30,000 for circular and trapezoidal grooves and up to Re = 28,000 for rectangular grooves. It is observed that there is an optimum value of the entropy generation number at about Re = 17,000 for all investigated grooves.
doi_str_mv 10.1016/j.applthermaleng.2008.04.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35679943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431108001907</els_id><sourcerecordid>35679943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-3f2052874902d14d9da190872edfbb5dd8c9f8469d5cbdaf2c8014c9dbfe48a83</originalsourceid><addsrcrecordid>eNqNkDFPwzAQhT2ARCn8Bw_AlmAnThtLLKiigFSJpQxMlmOfU1dJXGy3Uv89jlohsTG94d67d_chdEdJTgmdPW5zudt1cQO-lx0MbV4QUueE5Uku0ISWFc9YSekVug5hSwgt6jmboK_1BrAdDhCibWW0bsDO4NY7dwDcgush-iMGY0BFnIYbkBFHL4dgwGPjfApH8IPsuuM5pnHcNxBu0KWRXYDbs07R5_JlvXjLVh-v74vnVaZKTmNWmoJU4y2cFJoyzbWknNTzArRpmkrrWnFTsxnXlWq0NIWqCWWK68YAq2VdTtHDae_Ou-99-kP0NijoOjmA2wdRVrM556xMxqeTUXkXggcjdt720h8FJWJkKLbiL0MxMhSEiSQpfn_ukUHJziQGyobfHQUtqpJWY83y5IP09MGCF0FZGBRo6xNEoZ39X-EPGoCU3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35679943</pqid></control><display><type>article</type><title>The investigation of groove geometry effect on heat transfer for internally grooved tubes</title><source>Elsevier ScienceDirect Journals</source><creator>Bilen, Kadir ; Cetin, Murat ; Gul, Hasan ; Balta, Tuba</creator><creatorcontrib>Bilen, Kadir ; Cetin, Murat ; Gul, Hasan ; Balta, Tuba</creatorcontrib><description>An experimental study of surface heat transfer and friction characteristics of a fully developed turbulent air flow in different grooved tubes is reported. Tests were performed for Reynolds number range 10,000–38,000 and for different geometric groove shapes (circular, trapezoidal and rectangular). The ratio of tube length-to-diameter is 33. Among the grooved tubes, heat transfer enhancement is obtained up to 63% for circular groove, 58% for trapezoidal groove and 47% for rectangular groove, in comparison with the smooth tube at the highest Reynolds number ( Re = 38,000). Correlations of heat transfer and friction coefficient were obtained for different grooved tubes. In evaluation of thermal performance, it is seen that the grooved tubes are thermodynamically advantageous ( Ns, a &lt; 1) up to Re = 30,000 for circular and trapezoidal grooves and up to Re = 28,000 for rectangular grooves. It is observed that there is an optimum value of the entropy generation number at about Re = 17,000 for all investigated grooves.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2008.04.008</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Convective heat transfer ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Grooved tube ; Grooves ; Heat exchanger ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; Heat transfer enhancement/augmentation ; Ribs ; Theoretical studies. Data and constants. Metering</subject><ispartof>Applied thermal engineering, 2009-03, Vol.29 (4), p.753-761</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-3f2052874902d14d9da190872edfbb5dd8c9f8469d5cbdaf2c8014c9dbfe48a83</citedby><cites>FETCH-LOGICAL-c391t-3f2052874902d14d9da190872edfbb5dd8c9f8469d5cbdaf2c8014c9dbfe48a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359431108001907$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21253153$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bilen, Kadir</creatorcontrib><creatorcontrib>Cetin, Murat</creatorcontrib><creatorcontrib>Gul, Hasan</creatorcontrib><creatorcontrib>Balta, Tuba</creatorcontrib><title>The investigation of groove geometry effect on heat transfer for internally grooved tubes</title><title>Applied thermal engineering</title><description>An experimental study of surface heat transfer and friction characteristics of a fully developed turbulent air flow in different grooved tubes is reported. Tests were performed for Reynolds number range 10,000–38,000 and for different geometric groove shapes (circular, trapezoidal and rectangular). The ratio of tube length-to-diameter is 33. Among the grooved tubes, heat transfer enhancement is obtained up to 63% for circular groove, 58% for trapezoidal groove and 47% for rectangular groove, in comparison with the smooth tube at the highest Reynolds number ( Re = 38,000). Correlations of heat transfer and friction coefficient were obtained for different grooved tubes. In evaluation of thermal performance, it is seen that the grooved tubes are thermodynamically advantageous ( Ns, a &lt; 1) up to Re = 30,000 for circular and trapezoidal grooves and up to Re = 28,000 for rectangular grooves. It is observed that there is an optimum value of the entropy generation number at about Re = 17,000 for all investigated grooves.</description><subject>Applied sciences</subject><subject>Convective heat transfer</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Grooved tube</subject><subject>Grooves</subject><subject>Heat exchanger</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>Heat transfer enhancement/augmentation</subject><subject>Ribs</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkDFPwzAQhT2ARCn8Bw_AlmAnThtLLKiigFSJpQxMlmOfU1dJXGy3Uv89jlohsTG94d67d_chdEdJTgmdPW5zudt1cQO-lx0MbV4QUueE5Uku0ISWFc9YSekVug5hSwgt6jmboK_1BrAdDhCibWW0bsDO4NY7dwDcgush-iMGY0BFnIYbkBFHL4dgwGPjfApH8IPsuuM5pnHcNxBu0KWRXYDbs07R5_JlvXjLVh-v74vnVaZKTmNWmoJU4y2cFJoyzbWknNTzArRpmkrrWnFTsxnXlWq0NIWqCWWK68YAq2VdTtHDae_Ou-99-kP0NijoOjmA2wdRVrM556xMxqeTUXkXggcjdt720h8FJWJkKLbiL0MxMhSEiSQpfn_ukUHJziQGyobfHQUtqpJWY83y5IP09MGCF0FZGBRo6xNEoZ39X-EPGoCU3w</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Bilen, Kadir</creator><creator>Cetin, Murat</creator><creator>Gul, Hasan</creator><creator>Balta, Tuba</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20090301</creationdate><title>The investigation of groove geometry effect on heat transfer for internally grooved tubes</title><author>Bilen, Kadir ; Cetin, Murat ; Gul, Hasan ; Balta, Tuba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-3f2052874902d14d9da190872edfbb5dd8c9f8469d5cbdaf2c8014c9dbfe48a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Convective heat transfer</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Grooved tube</topic><topic>Grooves</topic><topic>Heat exchanger</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>Heat transfer enhancement/augmentation</topic><topic>Ribs</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilen, Kadir</creatorcontrib><creatorcontrib>Cetin, Murat</creatorcontrib><creatorcontrib>Gul, Hasan</creatorcontrib><creatorcontrib>Balta, Tuba</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilen, Kadir</au><au>Cetin, Murat</au><au>Gul, Hasan</au><au>Balta, Tuba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The investigation of groove geometry effect on heat transfer for internally grooved tubes</atitle><jtitle>Applied thermal engineering</jtitle><date>2009-03-01</date><risdate>2009</risdate><volume>29</volume><issue>4</issue><spage>753</spage><epage>761</epage><pages>753-761</pages><issn>1359-4311</issn><abstract>An experimental study of surface heat transfer and friction characteristics of a fully developed turbulent air flow in different grooved tubes is reported. Tests were performed for Reynolds number range 10,000–38,000 and for different geometric groove shapes (circular, trapezoidal and rectangular). The ratio of tube length-to-diameter is 33. Among the grooved tubes, heat transfer enhancement is obtained up to 63% for circular groove, 58% for trapezoidal groove and 47% for rectangular groove, in comparison with the smooth tube at the highest Reynolds number ( Re = 38,000). Correlations of heat transfer and friction coefficient were obtained for different grooved tubes. In evaluation of thermal performance, it is seen that the grooved tubes are thermodynamically advantageous ( Ns, a &lt; 1) up to Re = 30,000 for circular and trapezoidal grooves and up to Re = 28,000 for rectangular grooves. It is observed that there is an optimum value of the entropy generation number at about Re = 17,000 for all investigated grooves.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2008.04.008</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2009-03, Vol.29 (4), p.753-761
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_35679943
source Elsevier ScienceDirect Journals
subjects Applied sciences
Convective heat transfer
Devices using thermal energy
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Grooved tube
Grooves
Heat exchanger
Heat exchangers (included heat transformers, condensers, cooling towers)
Heat transfer
Heat transfer enhancement/augmentation
Ribs
Theoretical studies. Data and constants. Metering
title The investigation of groove geometry effect on heat transfer for internally grooved tubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20investigation%20of%20groove%20geometry%20effect%20on%20heat%20transfer%20for%20internally%20grooved%20tubes&rft.jtitle=Applied%20thermal%20engineering&rft.au=Bilen,%20Kadir&rft.date=2009-03-01&rft.volume=29&rft.issue=4&rft.spage=753&rft.epage=761&rft.pages=753-761&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2008.04.008&rft_dat=%3Cproquest_cross%3E35679943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35679943&rft_id=info:pmid/&rft_els_id=S1359431108001907&rfr_iscdi=true