The investigation of groove geometry effect on heat transfer for internally grooved tubes
An experimental study of surface heat transfer and friction characteristics of a fully developed turbulent air flow in different grooved tubes is reported. Tests were performed for Reynolds number range 10,000–38,000 and for different geometric groove shapes (circular, trapezoidal and rectangular)....
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2009-03, Vol.29 (4), p.753-761 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 761 |
---|---|
container_issue | 4 |
container_start_page | 753 |
container_title | Applied thermal engineering |
container_volume | 29 |
creator | Bilen, Kadir Cetin, Murat Gul, Hasan Balta, Tuba |
description | An experimental study of surface heat transfer and friction characteristics of a fully developed turbulent air flow in different grooved tubes is reported. Tests were performed for Reynolds number range 10,000–38,000 and for different geometric groove shapes (circular, trapezoidal and rectangular). The ratio of tube length-to-diameter is 33. Among the grooved tubes, heat transfer enhancement is obtained up to 63% for circular groove, 58% for trapezoidal groove and 47% for rectangular groove, in comparison with the smooth tube at the highest Reynolds number (
Re
=
38,000). Correlations of heat transfer and friction coefficient were obtained for different grooved tubes. In evaluation of thermal performance, it is seen that the grooved tubes are thermodynamically advantageous (
Ns,
a
<
1) up to
Re
=
30,000 for circular and trapezoidal grooves and up to
Re
=
28,000 for rectangular grooves. It is observed that there is an optimum value of the entropy generation number at about
Re
=
17,000 for all investigated grooves. |
doi_str_mv | 10.1016/j.applthermaleng.2008.04.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35679943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431108001907</els_id><sourcerecordid>35679943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-3f2052874902d14d9da190872edfbb5dd8c9f8469d5cbdaf2c8014c9dbfe48a83</originalsourceid><addsrcrecordid>eNqNkDFPwzAQhT2ARCn8Bw_AlmAnThtLLKiigFSJpQxMlmOfU1dJXGy3Uv89jlohsTG94d67d_chdEdJTgmdPW5zudt1cQO-lx0MbV4QUueE5Uku0ISWFc9YSekVug5hSwgt6jmboK_1BrAdDhCibWW0bsDO4NY7dwDcgush-iMGY0BFnIYbkBFHL4dgwGPjfApH8IPsuuM5pnHcNxBu0KWRXYDbs07R5_JlvXjLVh-v74vnVaZKTmNWmoJU4y2cFJoyzbWknNTzArRpmkrrWnFTsxnXlWq0NIWqCWWK68YAq2VdTtHDae_Ou-99-kP0NijoOjmA2wdRVrM556xMxqeTUXkXggcjdt720h8FJWJkKLbiL0MxMhSEiSQpfn_ukUHJziQGyobfHQUtqpJWY83y5IP09MGCF0FZGBRo6xNEoZ39X-EPGoCU3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35679943</pqid></control><display><type>article</type><title>The investigation of groove geometry effect on heat transfer for internally grooved tubes</title><source>Elsevier ScienceDirect Journals</source><creator>Bilen, Kadir ; Cetin, Murat ; Gul, Hasan ; Balta, Tuba</creator><creatorcontrib>Bilen, Kadir ; Cetin, Murat ; Gul, Hasan ; Balta, Tuba</creatorcontrib><description>An experimental study of surface heat transfer and friction characteristics of a fully developed turbulent air flow in different grooved tubes is reported. Tests were performed for Reynolds number range 10,000–38,000 and for different geometric groove shapes (circular, trapezoidal and rectangular). The ratio of tube length-to-diameter is 33. Among the grooved tubes, heat transfer enhancement is obtained up to 63% for circular groove, 58% for trapezoidal groove and 47% for rectangular groove, in comparison with the smooth tube at the highest Reynolds number (
Re
=
38,000). Correlations of heat transfer and friction coefficient were obtained for different grooved tubes. In evaluation of thermal performance, it is seen that the grooved tubes are thermodynamically advantageous (
Ns,
a
<
1) up to
Re
=
30,000 for circular and trapezoidal grooves and up to
Re
=
28,000 for rectangular grooves. It is observed that there is an optimum value of the entropy generation number at about
Re
=
17,000 for all investigated grooves.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2008.04.008</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Convective heat transfer ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Grooved tube ; Grooves ; Heat exchanger ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; Heat transfer enhancement/augmentation ; Ribs ; Theoretical studies. Data and constants. Metering</subject><ispartof>Applied thermal engineering, 2009-03, Vol.29 (4), p.753-761</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-3f2052874902d14d9da190872edfbb5dd8c9f8469d5cbdaf2c8014c9dbfe48a83</citedby><cites>FETCH-LOGICAL-c391t-3f2052874902d14d9da190872edfbb5dd8c9f8469d5cbdaf2c8014c9dbfe48a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359431108001907$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21253153$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bilen, Kadir</creatorcontrib><creatorcontrib>Cetin, Murat</creatorcontrib><creatorcontrib>Gul, Hasan</creatorcontrib><creatorcontrib>Balta, Tuba</creatorcontrib><title>The investigation of groove geometry effect on heat transfer for internally grooved tubes</title><title>Applied thermal engineering</title><description>An experimental study of surface heat transfer and friction characteristics of a fully developed turbulent air flow in different grooved tubes is reported. Tests were performed for Reynolds number range 10,000–38,000 and for different geometric groove shapes (circular, trapezoidal and rectangular). The ratio of tube length-to-diameter is 33. Among the grooved tubes, heat transfer enhancement is obtained up to 63% for circular groove, 58% for trapezoidal groove and 47% for rectangular groove, in comparison with the smooth tube at the highest Reynolds number (
Re
=
38,000). Correlations of heat transfer and friction coefficient were obtained for different grooved tubes. In evaluation of thermal performance, it is seen that the grooved tubes are thermodynamically advantageous (
Ns,
a
<
1) up to
Re
=
30,000 for circular and trapezoidal grooves and up to
Re
=
28,000 for rectangular grooves. It is observed that there is an optimum value of the entropy generation number at about
Re
=
17,000 for all investigated grooves.</description><subject>Applied sciences</subject><subject>Convective heat transfer</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Grooved tube</subject><subject>Grooves</subject><subject>Heat exchanger</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>Heat transfer enhancement/augmentation</subject><subject>Ribs</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkDFPwzAQhT2ARCn8Bw_AlmAnThtLLKiigFSJpQxMlmOfU1dJXGy3Uv89jlohsTG94d67d_chdEdJTgmdPW5zudt1cQO-lx0MbV4QUueE5Uku0ISWFc9YSekVug5hSwgt6jmboK_1BrAdDhCibWW0bsDO4NY7dwDcgush-iMGY0BFnIYbkBFHL4dgwGPjfApH8IPsuuM5pnHcNxBu0KWRXYDbs07R5_JlvXjLVh-v74vnVaZKTmNWmoJU4y2cFJoyzbWknNTzArRpmkrrWnFTsxnXlWq0NIWqCWWK68YAq2VdTtHDae_Ou-99-kP0NijoOjmA2wdRVrM556xMxqeTUXkXggcjdt720h8FJWJkKLbiL0MxMhSEiSQpfn_ukUHJziQGyobfHQUtqpJWY83y5IP09MGCF0FZGBRo6xNEoZ39X-EPGoCU3w</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Bilen, Kadir</creator><creator>Cetin, Murat</creator><creator>Gul, Hasan</creator><creator>Balta, Tuba</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20090301</creationdate><title>The investigation of groove geometry effect on heat transfer for internally grooved tubes</title><author>Bilen, Kadir ; Cetin, Murat ; Gul, Hasan ; Balta, Tuba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-3f2052874902d14d9da190872edfbb5dd8c9f8469d5cbdaf2c8014c9dbfe48a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Convective heat transfer</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Grooved tube</topic><topic>Grooves</topic><topic>Heat exchanger</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>Heat transfer enhancement/augmentation</topic><topic>Ribs</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilen, Kadir</creatorcontrib><creatorcontrib>Cetin, Murat</creatorcontrib><creatorcontrib>Gul, Hasan</creatorcontrib><creatorcontrib>Balta, Tuba</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilen, Kadir</au><au>Cetin, Murat</au><au>Gul, Hasan</au><au>Balta, Tuba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The investigation of groove geometry effect on heat transfer for internally grooved tubes</atitle><jtitle>Applied thermal engineering</jtitle><date>2009-03-01</date><risdate>2009</risdate><volume>29</volume><issue>4</issue><spage>753</spage><epage>761</epage><pages>753-761</pages><issn>1359-4311</issn><abstract>An experimental study of surface heat transfer and friction characteristics of a fully developed turbulent air flow in different grooved tubes is reported. Tests were performed for Reynolds number range 10,000–38,000 and for different geometric groove shapes (circular, trapezoidal and rectangular). The ratio of tube length-to-diameter is 33. Among the grooved tubes, heat transfer enhancement is obtained up to 63% for circular groove, 58% for trapezoidal groove and 47% for rectangular groove, in comparison with the smooth tube at the highest Reynolds number (
Re
=
38,000). Correlations of heat transfer and friction coefficient were obtained for different grooved tubes. In evaluation of thermal performance, it is seen that the grooved tubes are thermodynamically advantageous (
Ns,
a
<
1) up to
Re
=
30,000 for circular and trapezoidal grooves and up to
Re
=
28,000 for rectangular grooves. It is observed that there is an optimum value of the entropy generation number at about
Re
=
17,000 for all investigated grooves.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2008.04.008</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2009-03, Vol.29 (4), p.753-761 |
issn | 1359-4311 |
language | eng |
recordid | cdi_proquest_miscellaneous_35679943 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Convective heat transfer Devices using thermal energy Energy Energy. Thermal use of fuels Exact sciences and technology Grooved tube Grooves Heat exchanger Heat exchangers (included heat transformers, condensers, cooling towers) Heat transfer Heat transfer enhancement/augmentation Ribs Theoretical studies. Data and constants. Metering |
title | The investigation of groove geometry effect on heat transfer for internally grooved tubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20investigation%20of%20groove%20geometry%20effect%20on%20heat%20transfer%20for%20internally%20grooved%20tubes&rft.jtitle=Applied%20thermal%20engineering&rft.au=Bilen,%20Kadir&rft.date=2009-03-01&rft.volume=29&rft.issue=4&rft.spage=753&rft.epage=761&rft.pages=753-761&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2008.04.008&rft_dat=%3Cproquest_cross%3E35679943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35679943&rft_id=info:pmid/&rft_els_id=S1359431108001907&rfr_iscdi=true |