Simulation of Slurry Polymerization of Ethylene

A model of slurry polymerization of ethylene in a multistage continuous stirred-tank reactor (CSTR) was developed in order to find the effect of stagewise variation of parameters on polymer polydispersity and rate of polymerization. Higbie's penetration theory has been used to calculate monomer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of chemical reactor engineering 2008-12, Vol.6 (1), p.1654-1654
Hauptverfasser: Soni, Nipun J, Bhagwat, Sunil S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1654
container_issue 1
container_start_page 1654
container_title International journal of chemical reactor engineering
container_volume 6
creator Soni, Nipun J
Bhagwat, Sunil S
description A model of slurry polymerization of ethylene in a multistage continuous stirred-tank reactor (CSTR) was developed in order to find the effect of stagewise variation of parameters on polymer polydispersity and rate of polymerization. Higbie's penetration theory has been used to calculate monomer absorption rate in the presence of micron-sized single site type catalyst in slurry phase. The residence time distribution of the growing polymer particles in an ideal CSTR was modelled by a relaxation-type unsteady state approach. The effect of gas-liquid mass transfer limitations on polymer properties is predicted for various reactor configurations. An analysis of various possible configurations of two-stage CSTR with stagewise variation of the partial pressures of ethylene and/or hydrogen has been made.
doi_str_mv 10.2202/1542-6580.1654
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35654355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35654355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-99e954b3ff402669a0d3db318c8522e909fcab2a4091b0320b724a28accbebd3</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMmdiS3v-SuMRSguISoBaMbBYtuuIgJMUO5EIfz2JgiKmO91776TfQ-gSw4wQIHPMGYkTnsIMJ5wdocl4OP63n6KzED4AsOAcT9B8mxeNU3VelVGVRVvXeN9Gz5VrC-vzn1FY1e-ts6U9RyeZcsFe_M0p2q1Xu-V9vHm6e1heb2JDIa1jIazgTNMsY0CSRCjY072mODUpJ8QKEJlRmigGAmugBPSCMEVSZYy2ek-n6Gp4e_DVV2NDLYs8GOucKm3VBEl5h0g574yzwWh8FYK3mTz4vFC-lRhkX4vsyWVPLvtaukA8BPJQ2-_RrfynTBZ0weXLjsm3W3i9eUyoBPoLoHdjOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35654355</pqid></control><display><type>article</type><title>Simulation of Slurry Polymerization of Ethylene</title><source>De Gruyter journals</source><creator>Soni, Nipun J ; Bhagwat, Sunil S</creator><creatorcontrib>Soni, Nipun J ; Bhagwat, Sunil S</creatorcontrib><description>A model of slurry polymerization of ethylene in a multistage continuous stirred-tank reactor (CSTR) was developed in order to find the effect of stagewise variation of parameters on polymer polydispersity and rate of polymerization. Higbie's penetration theory has been used to calculate monomer absorption rate in the presence of micron-sized single site type catalyst in slurry phase. The residence time distribution of the growing polymer particles in an ideal CSTR was modelled by a relaxation-type unsteady state approach. The effect of gas-liquid mass transfer limitations on polymer properties is predicted for various reactor configurations. An analysis of various possible configurations of two-stage CSTR with stagewise variation of the partial pressures of ethylene and/or hydrogen has been made.</description><identifier>ISSN: 1542-6580</identifier><identifier>EISSN: 1542-6580</identifier><identifier>DOI: 10.2202/1542-6580.1654</identifier><language>eng</language><publisher>De Gruyter</publisher><subject>multiple tanks in series ; polydispersity ; three phase polymerization</subject><ispartof>International journal of chemical reactor engineering, 2008-12, Vol.6 (1), p.1654-1654</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-99e954b3ff402669a0d3db318c8522e909fcab2a4091b0320b724a28accbebd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Soni, Nipun J</creatorcontrib><creatorcontrib>Bhagwat, Sunil S</creatorcontrib><title>Simulation of Slurry Polymerization of Ethylene</title><title>International journal of chemical reactor engineering</title><description>A model of slurry polymerization of ethylene in a multistage continuous stirred-tank reactor (CSTR) was developed in order to find the effect of stagewise variation of parameters on polymer polydispersity and rate of polymerization. Higbie's penetration theory has been used to calculate monomer absorption rate in the presence of micron-sized single site type catalyst in slurry phase. The residence time distribution of the growing polymer particles in an ideal CSTR was modelled by a relaxation-type unsteady state approach. The effect of gas-liquid mass transfer limitations on polymer properties is predicted for various reactor configurations. An analysis of various possible configurations of two-stage CSTR with stagewise variation of the partial pressures of ethylene and/or hydrogen has been made.</description><subject>multiple tanks in series</subject><subject>polydispersity</subject><subject>three phase polymerization</subject><issn>1542-6580</issn><issn>1542-6580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpNkL1PwzAQxS0EEqWwMmdiS3v-SuMRSguISoBaMbBYtuuIgJMUO5EIfz2JgiKmO91776TfQ-gSw4wQIHPMGYkTnsIMJ5wdocl4OP63n6KzED4AsOAcT9B8mxeNU3VelVGVRVvXeN9Gz5VrC-vzn1FY1e-ts6U9RyeZcsFe_M0p2q1Xu-V9vHm6e1heb2JDIa1jIazgTNMsY0CSRCjY072mODUpJ8QKEJlRmigGAmugBPSCMEVSZYy2ek-n6Gp4e_DVV2NDLYs8GOucKm3VBEl5h0g574yzwWh8FYK3mTz4vFC-lRhkX4vsyWVPLvtaukA8BPJQ2-_RrfynTBZ0weXLjsm3W3i9eUyoBPoLoHdjOQ</recordid><startdate>20081219</startdate><enddate>20081219</enddate><creator>Soni, Nipun J</creator><creator>Bhagwat, Sunil S</creator><general>De Gruyter</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20081219</creationdate><title>Simulation of Slurry Polymerization of Ethylene</title><author>Soni, Nipun J ; Bhagwat, Sunil S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-99e954b3ff402669a0d3db318c8522e909fcab2a4091b0320b724a28accbebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>multiple tanks in series</topic><topic>polydispersity</topic><topic>three phase polymerization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soni, Nipun J</creatorcontrib><creatorcontrib>Bhagwat, Sunil S</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of chemical reactor engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soni, Nipun J</au><au>Bhagwat, Sunil S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Slurry Polymerization of Ethylene</atitle><jtitle>International journal of chemical reactor engineering</jtitle><date>2008-12-19</date><risdate>2008</risdate><volume>6</volume><issue>1</issue><spage>1654</spage><epage>1654</epage><pages>1654-1654</pages><issn>1542-6580</issn><eissn>1542-6580</eissn><abstract>A model of slurry polymerization of ethylene in a multistage continuous stirred-tank reactor (CSTR) was developed in order to find the effect of stagewise variation of parameters on polymer polydispersity and rate of polymerization. Higbie's penetration theory has been used to calculate monomer absorption rate in the presence of micron-sized single site type catalyst in slurry phase. The residence time distribution of the growing polymer particles in an ideal CSTR was modelled by a relaxation-type unsteady state approach. The effect of gas-liquid mass transfer limitations on polymer properties is predicted for various reactor configurations. An analysis of various possible configurations of two-stage CSTR with stagewise variation of the partial pressures of ethylene and/or hydrogen has been made.</abstract><pub>De Gruyter</pub><doi>10.2202/1542-6580.1654</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1542-6580
ispartof International journal of chemical reactor engineering, 2008-12, Vol.6 (1), p.1654-1654
issn 1542-6580
1542-6580
language eng
recordid cdi_proquest_miscellaneous_35654355
source De Gruyter journals
subjects multiple tanks in series
polydispersity
three phase polymerization
title Simulation of Slurry Polymerization of Ethylene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Slurry%20Polymerization%20of%20Ethylene&rft.jtitle=International%20journal%20of%20chemical%20reactor%20engineering&rft.au=Soni,%20Nipun%20J&rft.date=2008-12-19&rft.volume=6&rft.issue=1&rft.spage=1654&rft.epage=1654&rft.pages=1654-1654&rft.issn=1542-6580&rft.eissn=1542-6580&rft_id=info:doi/10.2202/1542-6580.1654&rft_dat=%3Cproquest_cross%3E35654355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35654355&rft_id=info:pmid/&rfr_iscdi=true