Self-Heating of 4H-SiC PiN Diodes at High Current Densities

Self-heating in high-voltage 4H-SiC PiN diodes has been studied experimentally and theoretically in dc and 8-ms single pulse modes. To simulate the self-heating, an electro-thermal model was used to calculate non-isothermal current-voltage characteristics at dc and current-time dependences at pulsed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Palmour, John W., Levinshtein, Michael E., Ivanov, Pavel A., Hull, Brett A., Mnatsakanov, Tigran T., Das, Mrinal K.
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self-heating in high-voltage 4H-SiC PiN diodes has been studied experimentally and theoretically in dc and 8-ms single pulse modes. To simulate the self-heating, an electro-thermal model was used to calculate non-isothermal current-voltage characteristics at dc and current-time dependences at pulsed measurements. The dynamic instability of N-type was observed: the current decreases in spite of increasing of bias applied to the structure. At dc, irreversible diode degradation was found to occur at a current density of about 1700 A/cm2. Under a single current surge 8-ms pulse, the loss of thermal stability has been found at a current density of approximately 9000 A/cm2. Comparison of experimental data and simulations showed that the local temperature in the diode base at the end of the 8-ms, 9000-A/cm2 pulse reaches 2000 – 2300 K.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.600-603.1007