Biplanar crossing numbers. II. Comparing crossing numbers and biplanar crossing numbers using the probabilistic method
The biplanar crossing number cr2(G) of a graph G is min G 1∪G 2=G{cr(G1) + cr(G2)}, where cr is the planar crossing number. We show that cr2(G) ≤ (3/8)cr(G). Using this result recursively, we bound the thickness by Θ(G) ‐ 2 ≤ Kcr2(G)0.4057 log2n with some constant K. A partition realizing this bound...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2008-12, Vol.33 (4), p.480-496 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 496 |
---|---|
container_issue | 4 |
container_start_page | 480 |
container_title | Random structures & algorithms |
container_volume | 33 |
creator | Czabarka, Eva Sykora, Ondrej Szekely, Laszlo A Vrto, Imrich |
description | The biplanar crossing number cr2(G) of a graph G is min G 1∪G 2=G{cr(G1) + cr(G2)}, where cr is the planar crossing number. We show that cr2(G) ≤ (3/8)cr(G). Using this result recursively, we bound the thickness by Θ(G) ‐ 2 ≤ Kcr2(G)0.4057 log2n with some constant K. A partition realizing this bound for the thickness can be obtained by a polynomial time randomized algorithm. We show that for any size exceeding a certain threshold, there exists a graph G of this size, which simultaneously has the following properties: cr(G) is roughly as large as it can be for any graph of that size, and cr2(G) is as small as it can be for any graph of that size. The existence is shown using the probabilistic method. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008 |
doi_str_mv | 10.1002/rsa.20221 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35619098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35619098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3381-91e032b3b4555ec0ffbaa90f4825c913d810b694aa38b7635c8ad7f6584c96553</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A-8QmKR1I_YcZZtBaVSBRIPsbRsx6GBvLAToH9P2gALpK5sj88dzRwAzjEKMUJk4rwKCSIEH4ARRokISITF4fYekSARlByDE-9fEUIxJXQEPmZ5U6hKOWhc7X1evcCqK7V1PoTLZQjnddkoty3__4eqSqHel4bd7tWuLWxcrZXOi9y3uYGlbdd1egqOMlV4e_ZzjsHT9dXj_CZY3S2W8-kqMJQKHCTYIko01RFjzBqUZVqpBGWRIMwkmKYCI82TSCkqdMwpM0KlccaZiEzCGaNjcDH07Yd476xvZZl7Y4t-aFt3XlLGcdJr6sHLAdwt4mwmG5eXym0kRnJrVvZm5c5sz04G9jMv7GY_KO8fpr-JYEj0DuzXX0K5N8ljGjP5fLuQmN1jPouo5PQbESGKvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35619098</pqid></control><display><type>article</type><title>Biplanar crossing numbers. II. Comparing crossing numbers and biplanar crossing numbers using the probabilistic method</title><source>Access via Wiley Online Library</source><creator>Czabarka, Eva ; Sykora, Ondrej ; Szekely, Laszlo A ; Vrto, Imrich</creator><creatorcontrib>Czabarka, Eva ; Sykora, Ondrej ; Szekely, Laszlo A ; Vrto, Imrich</creatorcontrib><description>The biplanar crossing number cr2(G) of a graph G is min G 1∪G 2=G{cr(G1) + cr(G2)}, where cr is the planar crossing number. We show that cr2(G) ≤ (3/8)cr(G). Using this result recursively, we bound the thickness by Θ(G) ‐ 2 ≤ Kcr2(G)0.4057 log2n with some constant K. A partition realizing this bound for the thickness can be obtained by a polynomial time randomized algorithm. We show that for any size exceeding a certain threshold, there exists a graph G of this size, which simultaneously has the following properties: cr(G) is roughly as large as it can be for any graph of that size, and cr2(G) is as small as it can be for any graph of that size. The existence is shown using the probabilistic method. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.20221</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>biplanar crossing number ; crossing number ; graph drawing ; thickness</subject><ispartof>Random structures & algorithms, 2008-12, Vol.33 (4), p.480-496</ispartof><rights>Copyright © 2008 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3381-91e032b3b4555ec0ffbaa90f4825c913d810b694aa38b7635c8ad7f6584c96553</citedby><cites>FETCH-LOGICAL-c3381-91e032b3b4555ec0ffbaa90f4825c913d810b694aa38b7635c8ad7f6584c96553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.20221$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.20221$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Czabarka, Eva</creatorcontrib><creatorcontrib>Sykora, Ondrej</creatorcontrib><creatorcontrib>Szekely, Laszlo A</creatorcontrib><creatorcontrib>Vrto, Imrich</creatorcontrib><title>Biplanar crossing numbers. II. Comparing crossing numbers and biplanar crossing numbers using the probabilistic method</title><title>Random structures & algorithms</title><addtitle>Random Struct. Alg</addtitle><description>The biplanar crossing number cr2(G) of a graph G is min G 1∪G 2=G{cr(G1) + cr(G2)}, where cr is the planar crossing number. We show that cr2(G) ≤ (3/8)cr(G). Using this result recursively, we bound the thickness by Θ(G) ‐ 2 ≤ Kcr2(G)0.4057 log2n with some constant K. A partition realizing this bound for the thickness can be obtained by a polynomial time randomized algorithm. We show that for any size exceeding a certain threshold, there exists a graph G of this size, which simultaneously has the following properties: cr(G) is roughly as large as it can be for any graph of that size, and cr2(G) is as small as it can be for any graph of that size. The existence is shown using the probabilistic method. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008</description><subject>biplanar crossing number</subject><subject>crossing number</subject><subject>graph drawing</subject><subject>thickness</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A-8QmKR1I_YcZZtBaVSBRIPsbRsx6GBvLAToH9P2gALpK5sj88dzRwAzjEKMUJk4rwKCSIEH4ARRokISITF4fYekSARlByDE-9fEUIxJXQEPmZ5U6hKOWhc7X1evcCqK7V1PoTLZQjnddkoty3__4eqSqHel4bd7tWuLWxcrZXOi9y3uYGlbdd1egqOMlV4e_ZzjsHT9dXj_CZY3S2W8-kqMJQKHCTYIko01RFjzBqUZVqpBGWRIMwkmKYCI82TSCkqdMwpM0KlccaZiEzCGaNjcDH07Yd476xvZZl7Y4t-aFt3XlLGcdJr6sHLAdwt4mwmG5eXym0kRnJrVvZm5c5sz04G9jMv7GY_KO8fpr-JYEj0DuzXX0K5N8ljGjP5fLuQmN1jPouo5PQbESGKvQ</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Czabarka, Eva</creator><creator>Sykora, Ondrej</creator><creator>Szekely, Laszlo A</creator><creator>Vrto, Imrich</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200812</creationdate><title>Biplanar crossing numbers. II. Comparing crossing numbers and biplanar crossing numbers using the probabilistic method</title><author>Czabarka, Eva ; Sykora, Ondrej ; Szekely, Laszlo A ; Vrto, Imrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3381-91e032b3b4555ec0ffbaa90f4825c913d810b694aa38b7635c8ad7f6584c96553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>biplanar crossing number</topic><topic>crossing number</topic><topic>graph drawing</topic><topic>thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czabarka, Eva</creatorcontrib><creatorcontrib>Sykora, Ondrej</creatorcontrib><creatorcontrib>Szekely, Laszlo A</creatorcontrib><creatorcontrib>Vrto, Imrich</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures & algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czabarka, Eva</au><au>Sykora, Ondrej</au><au>Szekely, Laszlo A</au><au>Vrto, Imrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biplanar crossing numbers. II. Comparing crossing numbers and biplanar crossing numbers using the probabilistic method</atitle><jtitle>Random structures & algorithms</jtitle><addtitle>Random Struct. Alg</addtitle><date>2008-12</date><risdate>2008</risdate><volume>33</volume><issue>4</issue><spage>480</spage><epage>496</epage><pages>480-496</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>The biplanar crossing number cr2(G) of a graph G is min G 1∪G 2=G{cr(G1) + cr(G2)}, where cr is the planar crossing number. We show that cr2(G) ≤ (3/8)cr(G). Using this result recursively, we bound the thickness by Θ(G) ‐ 2 ≤ Kcr2(G)0.4057 log2n with some constant K. A partition realizing this bound for the thickness can be obtained by a polynomial time randomized algorithm. We show that for any size exceeding a certain threshold, there exists a graph G of this size, which simultaneously has the following properties: cr(G) is roughly as large as it can be for any graph of that size, and cr2(G) is as small as it can be for any graph of that size. The existence is shown using the probabilistic method. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/rsa.20221</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-9832 |
ispartof | Random structures & algorithms, 2008-12, Vol.33 (4), p.480-496 |
issn | 1042-9832 1098-2418 |
language | eng |
recordid | cdi_proquest_miscellaneous_35619098 |
source | Access via Wiley Online Library |
subjects | biplanar crossing number crossing number graph drawing thickness |
title | Biplanar crossing numbers. II. Comparing crossing numbers and biplanar crossing numbers using the probabilistic method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biplanar%20crossing%20numbers.%20II.%20Comparing%20crossing%20numbers%20and%20biplanar%20crossing%20numbers%20using%20the%20probabilistic%20method&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Czabarka,%20Eva&rft.date=2008-12&rft.volume=33&rft.issue=4&rft.spage=480&rft.epage=496&rft.pages=480-496&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.20221&rft_dat=%3Cproquest_cross%3E35619098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35619098&rft_id=info:pmid/&rfr_iscdi=true |