Biplanar crossing numbers. II. Comparing crossing numbers and biplanar crossing numbers using the probabilistic method

The biplanar crossing number cr2(G) of a graph G is min G 1∪G 2=G{cr(G1) + cr(G2)}, where cr is the planar crossing number. We show that cr2(G) ≤ (3/8)cr(G). Using this result recursively, we bound the thickness by Θ(G) ‐ 2 ≤ Kcr2(G)0.4057 log2n with some constant K. A partition realizing this bound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2008-12, Vol.33 (4), p.480-496
Hauptverfasser: Czabarka, Eva, Sykora, Ondrej, Szekely, Laszlo A, Vrto, Imrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 496
container_issue 4
container_start_page 480
container_title Random structures & algorithms
container_volume 33
creator Czabarka, Eva
Sykora, Ondrej
Szekely, Laszlo A
Vrto, Imrich
description The biplanar crossing number cr2(G) of a graph G is min G 1∪G 2=G{cr(G1) + cr(G2)}, where cr is the planar crossing number. We show that cr2(G) ≤ (3/8)cr(G). Using this result recursively, we bound the thickness by Θ(G) ‐ 2 ≤ Kcr2(G)0.4057 log2n with some constant K. A partition realizing this bound for the thickness can be obtained by a polynomial time randomized algorithm. We show that for any size exceeding a certain threshold, there exists a graph G of this size, which simultaneously has the following properties: cr(G) is roughly as large as it can be for any graph of that size, and cr2(G) is as small as it can be for any graph of that size. The existence is shown using the probabilistic method. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008
doi_str_mv 10.1002/rsa.20221
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35619098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35619098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3381-91e032b3b4555ec0ffbaa90f4825c913d810b694aa38b7635c8ad7f6584c96553</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A-8QmKR1I_YcZZtBaVSBRIPsbRsx6GBvLAToH9P2gALpK5sj88dzRwAzjEKMUJk4rwKCSIEH4ARRokISITF4fYekSARlByDE-9fEUIxJXQEPmZ5U6hKOWhc7X1evcCqK7V1PoTLZQjnddkoty3__4eqSqHel4bd7tWuLWxcrZXOi9y3uYGlbdd1egqOMlV4e_ZzjsHT9dXj_CZY3S2W8-kqMJQKHCTYIko01RFjzBqUZVqpBGWRIMwkmKYCI82TSCkqdMwpM0KlccaZiEzCGaNjcDH07Yd476xvZZl7Y4t-aFt3XlLGcdJr6sHLAdwt4mwmG5eXym0kRnJrVvZm5c5sz04G9jMv7GY_KO8fpr-JYEj0DuzXX0K5N8ljGjP5fLuQmN1jPouo5PQbESGKvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35619098</pqid></control><display><type>article</type><title>Biplanar crossing numbers. II. Comparing crossing numbers and biplanar crossing numbers using the probabilistic method</title><source>Access via Wiley Online Library</source><creator>Czabarka, Eva ; Sykora, Ondrej ; Szekely, Laszlo A ; Vrto, Imrich</creator><creatorcontrib>Czabarka, Eva ; Sykora, Ondrej ; Szekely, Laszlo A ; Vrto, Imrich</creatorcontrib><description>The biplanar crossing number cr2(G) of a graph G is min G 1∪G 2=G{cr(G1) + cr(G2)}, where cr is the planar crossing number. We show that cr2(G) ≤ (3/8)cr(G). Using this result recursively, we bound the thickness by Θ(G) ‐ 2 ≤ Kcr2(G)0.4057 log2n with some constant K. A partition realizing this bound for the thickness can be obtained by a polynomial time randomized algorithm. We show that for any size exceeding a certain threshold, there exists a graph G of this size, which simultaneously has the following properties: cr(G) is roughly as large as it can be for any graph of that size, and cr2(G) is as small as it can be for any graph of that size. The existence is shown using the probabilistic method. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.20221</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>biplanar crossing number ; crossing number ; graph drawing ; thickness</subject><ispartof>Random structures &amp; algorithms, 2008-12, Vol.33 (4), p.480-496</ispartof><rights>Copyright © 2008 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3381-91e032b3b4555ec0ffbaa90f4825c913d810b694aa38b7635c8ad7f6584c96553</citedby><cites>FETCH-LOGICAL-c3381-91e032b3b4555ec0ffbaa90f4825c913d810b694aa38b7635c8ad7f6584c96553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.20221$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.20221$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Czabarka, Eva</creatorcontrib><creatorcontrib>Sykora, Ondrej</creatorcontrib><creatorcontrib>Szekely, Laszlo A</creatorcontrib><creatorcontrib>Vrto, Imrich</creatorcontrib><title>Biplanar crossing numbers. II. Comparing crossing numbers and biplanar crossing numbers using the probabilistic method</title><title>Random structures &amp; algorithms</title><addtitle>Random Struct. Alg</addtitle><description>The biplanar crossing number cr2(G) of a graph G is min G 1∪G 2=G{cr(G1) + cr(G2)}, where cr is the planar crossing number. We show that cr2(G) ≤ (3/8)cr(G). Using this result recursively, we bound the thickness by Θ(G) ‐ 2 ≤ Kcr2(G)0.4057 log2n with some constant K. A partition realizing this bound for the thickness can be obtained by a polynomial time randomized algorithm. We show that for any size exceeding a certain threshold, there exists a graph G of this size, which simultaneously has the following properties: cr(G) is roughly as large as it can be for any graph of that size, and cr2(G) is as small as it can be for any graph of that size. The existence is shown using the probabilistic method. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008</description><subject>biplanar crossing number</subject><subject>crossing number</subject><subject>graph drawing</subject><subject>thickness</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A-8QmKR1I_YcZZtBaVSBRIPsbRsx6GBvLAToH9P2gALpK5sj88dzRwAzjEKMUJk4rwKCSIEH4ARRokISITF4fYekSARlByDE-9fEUIxJXQEPmZ5U6hKOWhc7X1evcCqK7V1PoTLZQjnddkoty3__4eqSqHel4bd7tWuLWxcrZXOi9y3uYGlbdd1egqOMlV4e_ZzjsHT9dXj_CZY3S2W8-kqMJQKHCTYIko01RFjzBqUZVqpBGWRIMwkmKYCI82TSCkqdMwpM0KlccaZiEzCGaNjcDH07Yd476xvZZl7Y4t-aFt3XlLGcdJr6sHLAdwt4mwmG5eXym0kRnJrVvZm5c5sz04G9jMv7GY_KO8fpr-JYEj0DuzXX0K5N8ljGjP5fLuQmN1jPouo5PQbESGKvQ</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Czabarka, Eva</creator><creator>Sykora, Ondrej</creator><creator>Szekely, Laszlo A</creator><creator>Vrto, Imrich</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200812</creationdate><title>Biplanar crossing numbers. II. Comparing crossing numbers and biplanar crossing numbers using the probabilistic method</title><author>Czabarka, Eva ; Sykora, Ondrej ; Szekely, Laszlo A ; Vrto, Imrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3381-91e032b3b4555ec0ffbaa90f4825c913d810b694aa38b7635c8ad7f6584c96553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>biplanar crossing number</topic><topic>crossing number</topic><topic>graph drawing</topic><topic>thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czabarka, Eva</creatorcontrib><creatorcontrib>Sykora, Ondrej</creatorcontrib><creatorcontrib>Szekely, Laszlo A</creatorcontrib><creatorcontrib>Vrto, Imrich</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures &amp; algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czabarka, Eva</au><au>Sykora, Ondrej</au><au>Szekely, Laszlo A</au><au>Vrto, Imrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biplanar crossing numbers. II. Comparing crossing numbers and biplanar crossing numbers using the probabilistic method</atitle><jtitle>Random structures &amp; algorithms</jtitle><addtitle>Random Struct. Alg</addtitle><date>2008-12</date><risdate>2008</risdate><volume>33</volume><issue>4</issue><spage>480</spage><epage>496</epage><pages>480-496</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>The biplanar crossing number cr2(G) of a graph G is min G 1∪G 2=G{cr(G1) + cr(G2)}, where cr is the planar crossing number. We show that cr2(G) ≤ (3/8)cr(G). Using this result recursively, we bound the thickness by Θ(G) ‐ 2 ≤ Kcr2(G)0.4057 log2n with some constant K. A partition realizing this bound for the thickness can be obtained by a polynomial time randomized algorithm. We show that for any size exceeding a certain threshold, there exists a graph G of this size, which simultaneously has the following properties: cr(G) is roughly as large as it can be for any graph of that size, and cr2(G) is as small as it can be for any graph of that size. The existence is shown using the probabilistic method. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/rsa.20221</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1042-9832
ispartof Random structures & algorithms, 2008-12, Vol.33 (4), p.480-496
issn 1042-9832
1098-2418
language eng
recordid cdi_proquest_miscellaneous_35619098
source Access via Wiley Online Library
subjects biplanar crossing number
crossing number
graph drawing
thickness
title Biplanar crossing numbers. II. Comparing crossing numbers and biplanar crossing numbers using the probabilistic method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biplanar%20crossing%20numbers.%20II.%20Comparing%20crossing%20numbers%20and%20biplanar%20crossing%20numbers%20using%20the%20probabilistic%20method&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Czabarka,%20Eva&rft.date=2008-12&rft.volume=33&rft.issue=4&rft.spage=480&rft.epage=496&rft.pages=480-496&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.20221&rft_dat=%3Cproquest_cross%3E35619098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35619098&rft_id=info:pmid/&rfr_iscdi=true