Waterfront surveillance and trackability

This paper presents a method for waterfront surveillance system. Unlike traditional approaches that model dynamic water background explicitly, we choose a relaxed background model to extract multiple object hypotheses. The hypotheses are then tracked with probablistic framework. Finally, the hypothe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine vision and applications 2008-10, Vol.19 (5-6), p.291-300
Hauptverfasser: Li, Yi, Hua, Wei, Guo, Chengen, Gu, Haisong, Kang, Jinman, Chen, Xiangrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 5-6
container_start_page 291
container_title Machine vision and applications
container_volume 19
creator Li, Yi
Hua, Wei
Guo, Chengen
Gu, Haisong
Kang, Jinman
Chen, Xiangrong
description This paper presents a method for waterfront surveillance system. Unlike traditional approaches that model dynamic water background explicitly, we choose a relaxed background model to extract multiple object hypotheses. The hypotheses are then tracked with probablistic framework. Finally, the hypotheses are classified as positive objects or negative objects based on their trackability . Trackability is described by the stableness and the consistency of their trajectories and their appearances, and the properties of their accumulated templates.
doi_str_mv 10.1007/s00138-008-0157-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35604197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35604197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-18ffaca625dd108940c2dabb9030b01fb10208572710385721a547ab7d5f15843</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcFQdxU782jSZYy-IIBN4rLkLaJdOy0Y9IK8-9NqSAILi7nLr5zOBxCzhGuEUDeRABkKgdIh0Lm6oAskDOaoyz0IVmATr8CTY_JSYwbAOBS8gW5erODCz703ZDFMXy5pm1tV7nMdnU2BFt92LJpm2F_So68baM7-9Eleb2_e1k95uvnh6fV7TqvGJdDjsp7W9mCirpGUJpDRWtblhoYlIC-RKCghKQSgU2KVnBpS1kLj0JxtiSXc-4u9J-ji4PZNrFyUyvXj9EwUQBHLRN48Qfc9GPoUjdDi4JrwSjVicKZqkIfY3De7EKztWFvEMy0nJmXM2k5My1nVPLQ2RMT27278Jv8v-kbcQZucw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664953229</pqid></control><display><type>article</type><title>Waterfront surveillance and trackability</title><source>SpringerNature Journals</source><creator>Li, Yi ; Hua, Wei ; Guo, Chengen ; Gu, Haisong ; Kang, Jinman ; Chen, Xiangrong</creator><creatorcontrib>Li, Yi ; Hua, Wei ; Guo, Chengen ; Gu, Haisong ; Kang, Jinman ; Chen, Xiangrong</creatorcontrib><description>This paper presents a method for waterfront surveillance system. Unlike traditional approaches that model dynamic water background explicitly, we choose a relaxed background model to extract multiple object hypotheses. The hypotheses are then tracked with probablistic framework. Finally, the hypotheses are classified as positive objects or negative objects based on their trackability . Trackability is described by the stableness and the consistency of their trajectories and their appearances, and the properties of their accumulated templates.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-008-0157-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Communications Engineering ; Computer Science ; Hypotheses ; Image Processing and Computer Vision ; Networks ; Pattern Recognition ; Special Issue Paper ; Surveillance ; Surveillance systems ; Vision systems ; Waterfronts</subject><ispartof>Machine vision and applications, 2008-10, Vol.19 (5-6), p.291-300</ispartof><rights>Springer-Verlag 2008</rights><rights>Springer-Verlag 2008.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-18ffaca625dd108940c2dabb9030b01fb10208572710385721a547ab7d5f15843</citedby><cites>FETCH-LOGICAL-c347t-18ffaca625dd108940c2dabb9030b01fb10208572710385721a547ab7d5f15843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00138-008-0157-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00138-008-0157-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Hua, Wei</creatorcontrib><creatorcontrib>Guo, Chengen</creatorcontrib><creatorcontrib>Gu, Haisong</creatorcontrib><creatorcontrib>Kang, Jinman</creatorcontrib><creatorcontrib>Chen, Xiangrong</creatorcontrib><title>Waterfront surveillance and trackability</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>This paper presents a method for waterfront surveillance system. Unlike traditional approaches that model dynamic water background explicitly, we choose a relaxed background model to extract multiple object hypotheses. The hypotheses are then tracked with probablistic framework. Finally, the hypotheses are classified as positive objects or negative objects based on their trackability . Trackability is described by the stableness and the consistency of their trajectories and their appearances, and the properties of their accumulated templates.</description><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Hypotheses</subject><subject>Image Processing and Computer Vision</subject><subject>Networks</subject><subject>Pattern Recognition</subject><subject>Special Issue Paper</subject><subject>Surveillance</subject><subject>Surveillance systems</subject><subject>Vision systems</subject><subject>Waterfronts</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcFQdxU782jSZYy-IIBN4rLkLaJdOy0Y9IK8-9NqSAILi7nLr5zOBxCzhGuEUDeRABkKgdIh0Lm6oAskDOaoyz0IVmATr8CTY_JSYwbAOBS8gW5erODCz703ZDFMXy5pm1tV7nMdnU2BFt92LJpm2F_So68baM7-9Eleb2_e1k95uvnh6fV7TqvGJdDjsp7W9mCirpGUJpDRWtblhoYlIC-RKCghKQSgU2KVnBpS1kLj0JxtiSXc-4u9J-ji4PZNrFyUyvXj9EwUQBHLRN48Qfc9GPoUjdDi4JrwSjVicKZqkIfY3De7EKztWFvEMy0nJmXM2k5My1nVPLQ2RMT27278Jv8v-kbcQZucw</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Li, Yi</creator><creator>Hua, Wei</creator><creator>Guo, Chengen</creator><creator>Gu, Haisong</creator><creator>Kang, Jinman</creator><creator>Chen, Xiangrong</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20081001</creationdate><title>Waterfront surveillance and trackability</title><author>Li, Yi ; Hua, Wei ; Guo, Chengen ; Gu, Haisong ; Kang, Jinman ; Chen, Xiangrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-18ffaca625dd108940c2dabb9030b01fb10208572710385721a547ab7d5f15843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Hypotheses</topic><topic>Image Processing and Computer Vision</topic><topic>Networks</topic><topic>Pattern Recognition</topic><topic>Special Issue Paper</topic><topic>Surveillance</topic><topic>Surveillance systems</topic><topic>Vision systems</topic><topic>Waterfronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Hua, Wei</creatorcontrib><creatorcontrib>Guo, Chengen</creatorcontrib><creatorcontrib>Gu, Haisong</creatorcontrib><creatorcontrib>Kang, Jinman</creatorcontrib><creatorcontrib>Chen, Xiangrong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yi</au><au>Hua, Wei</au><au>Guo, Chengen</au><au>Gu, Haisong</au><au>Kang, Jinman</au><au>Chen, Xiangrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waterfront surveillance and trackability</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2008-10-01</date><risdate>2008</risdate><volume>19</volume><issue>5-6</issue><spage>291</spage><epage>300</epage><pages>291-300</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>This paper presents a method for waterfront surveillance system. Unlike traditional approaches that model dynamic water background explicitly, we choose a relaxed background model to extract multiple object hypotheses. The hypotheses are then tracked with probablistic framework. Finally, the hypotheses are classified as positive objects or negative objects based on their trackability . Trackability is described by the stableness and the consistency of their trajectories and their appearances, and the properties of their accumulated templates.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00138-008-0157-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-8092
ispartof Machine vision and applications, 2008-10, Vol.19 (5-6), p.291-300
issn 0932-8092
1432-1769
language eng
recordid cdi_proquest_miscellaneous_35604197
source SpringerNature Journals
subjects Communications Engineering
Computer Science
Hypotheses
Image Processing and Computer Vision
Networks
Pattern Recognition
Special Issue Paper
Surveillance
Surveillance systems
Vision systems
Waterfronts
title Waterfront surveillance and trackability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waterfront%20surveillance%20and%20trackability&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Li,%20Yi&rft.date=2008-10-01&rft.volume=19&rft.issue=5-6&rft.spage=291&rft.epage=300&rft.pages=291-300&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-008-0157-8&rft_dat=%3Cproquest_cross%3E35604197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664953229&rft_id=info:pmid/&rfr_iscdi=true