Water and solute active transport through human epidermis: Contribution of electromigration

A triphasic, coarse-grained model of mass transport through the human epidermis is developed, consisting of free extracellular water, live cells (keratinocytes), and inert extracellular matrix. The model accounts for the superposition of active transport of Na +, K + and Cl − ions across the membran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2008-11, Vol.51 (23), p.5623-5632
Hauptverfasser: Falkenberg, Cibele V., Georgiadis, John G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5632
container_issue 23
container_start_page 5623
container_title International journal of heat and mass transfer
container_volume 51
creator Falkenberg, Cibele V.
Georgiadis, John G.
description A triphasic, coarse-grained model of mass transport through the human epidermis is developed, consisting of free extracellular water, live cells (keratinocytes), and inert extracellular matrix. The model accounts for the superposition of active transport of Na +, K + and Cl − ions across the membrane of keratinocytes, and electromigration driven by an externally imposed electrostatic potential difference. Local cell volume is regulated by the transmembrane fluxes of water and ions according to a time-delay scheme which aims to keep the volume between certain thresholds. Numerical simulations reveal that either weak hyposmotic shocks or negative potential gradients smaller than one millivolt/micrometer across the epidermis can generate travelling waves in extracellular ion concentration. By monitoring the transmembrane (Na +−K + −ATPase) pump flux, we have found that maintaining a higher transepidermal potential gradient requires faster active transport through the cells.
doi_str_mv 10.1016/j.ijheatmasstransfer.2008.04.047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35601101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001793100800255X</els_id><sourcerecordid>35601101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-56e19b895ac281983ee8eb1c99c637feb72b47f4903459e0245754d1df33f2543</originalsourceid><addsrcrecordid>eNqNkE9LxDAQxYMouK5-h5zES9ekSZvGk7L4lwUvigcPIU2nbpa2WZN0wW9v6nrzIgwMM_P4Me8hdEHJghJaXm4WdrMGHXsdQvR6CC34RU5ItSA8lThAM1oJmeW0kodoRggVmWSUHKOTEDbTSHg5Q-9vOoLHemhwcN0YAWsT7Q7wD3PrfMRx7d34scbrsdcDhq1twPc2XOGlG6K39RitG7BrMXRgone9_fB62p2io1Z3Ac5--xy93t2-LB-y1fP94_JmlRkmWMyKEqisK1lok1dUVgyggpoaKU3JRAu1yGsuWi4J44UEkvNCFLyhTctYmxeczdH5nrv17nOEEFV6z0DX6QHcGBQrSkJTaEl4vRca70Lw0Kqtt732X4oSNaWqNupvqmpKVRGeSiTE0x4BydDOpmswFgYDjfXJvWqc_T_sG_Byjyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35601101</pqid></control><display><type>article</type><title>Water and solute active transport through human epidermis: Contribution of electromigration</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Falkenberg, Cibele V. ; Georgiadis, John G.</creator><creatorcontrib>Falkenberg, Cibele V. ; Georgiadis, John G.</creatorcontrib><description>A triphasic, coarse-grained model of mass transport through the human epidermis is developed, consisting of free extracellular water, live cells (keratinocytes), and inert extracellular matrix. The model accounts for the superposition of active transport of Na +, K + and Cl − ions across the membrane of keratinocytes, and electromigration driven by an externally imposed electrostatic potential difference. Local cell volume is regulated by the transmembrane fluxes of water and ions according to a time-delay scheme which aims to keep the volume between certain thresholds. Numerical simulations reveal that either weak hyposmotic shocks or negative potential gradients smaller than one millivolt/micrometer across the epidermis can generate travelling waves in extracellular ion concentration. By monitoring the transmembrane (Na +−K + −ATPase) pump flux, we have found that maintaining a higher transepidermal potential gradient requires faster active transport through the cells.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2008.04.047</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Active transport ; Electromigration ; Epidermis ; Ion pumps ; Keratinocytes ; Osmotic shock</subject><ispartof>International journal of heat and mass transfer, 2008-11, Vol.51 (23), p.5623-5632</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-56e19b895ac281983ee8eb1c99c637feb72b47f4903459e0245754d1df33f2543</citedby><cites>FETCH-LOGICAL-c373t-56e19b895ac281983ee8eb1c99c637feb72b47f4903459e0245754d1df33f2543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.04.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Falkenberg, Cibele V.</creatorcontrib><creatorcontrib>Georgiadis, John G.</creatorcontrib><title>Water and solute active transport through human epidermis: Contribution of electromigration</title><title>International journal of heat and mass transfer</title><description>A triphasic, coarse-grained model of mass transport through the human epidermis is developed, consisting of free extracellular water, live cells (keratinocytes), and inert extracellular matrix. The model accounts for the superposition of active transport of Na +, K + and Cl − ions across the membrane of keratinocytes, and electromigration driven by an externally imposed electrostatic potential difference. Local cell volume is regulated by the transmembrane fluxes of water and ions according to a time-delay scheme which aims to keep the volume between certain thresholds. Numerical simulations reveal that either weak hyposmotic shocks or negative potential gradients smaller than one millivolt/micrometer across the epidermis can generate travelling waves in extracellular ion concentration. By monitoring the transmembrane (Na +−K + −ATPase) pump flux, we have found that maintaining a higher transepidermal potential gradient requires faster active transport through the cells.</description><subject>Active transport</subject><subject>Electromigration</subject><subject>Epidermis</subject><subject>Ion pumps</subject><subject>Keratinocytes</subject><subject>Osmotic shock</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LxDAQxYMouK5-h5zES9ekSZvGk7L4lwUvigcPIU2nbpa2WZN0wW9v6nrzIgwMM_P4Me8hdEHJghJaXm4WdrMGHXsdQvR6CC34RU5ItSA8lThAM1oJmeW0kodoRggVmWSUHKOTEDbTSHg5Q-9vOoLHemhwcN0YAWsT7Q7wD3PrfMRx7d34scbrsdcDhq1twPc2XOGlG6K39RitG7BrMXRgone9_fB62p2io1Z3Ac5--xy93t2-LB-y1fP94_JmlRkmWMyKEqisK1lok1dUVgyggpoaKU3JRAu1yGsuWi4J44UEkvNCFLyhTctYmxeczdH5nrv17nOEEFV6z0DX6QHcGBQrSkJTaEl4vRca70Lw0Kqtt732X4oSNaWqNupvqmpKVRGeSiTE0x4BydDOpmswFgYDjfXJvWqc_T_sG_Byjyk</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Falkenberg, Cibele V.</creator><creator>Georgiadis, John G.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20081101</creationdate><title>Water and solute active transport through human epidermis: Contribution of electromigration</title><author>Falkenberg, Cibele V. ; Georgiadis, John G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-56e19b895ac281983ee8eb1c99c637feb72b47f4903459e0245754d1df33f2543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Active transport</topic><topic>Electromigration</topic><topic>Epidermis</topic><topic>Ion pumps</topic><topic>Keratinocytes</topic><topic>Osmotic shock</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falkenberg, Cibele V.</creatorcontrib><creatorcontrib>Georgiadis, John G.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falkenberg, Cibele V.</au><au>Georgiadis, John G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water and solute active transport through human epidermis: Contribution of electromigration</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2008-11-01</date><risdate>2008</risdate><volume>51</volume><issue>23</issue><spage>5623</spage><epage>5632</epage><pages>5623-5632</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>A triphasic, coarse-grained model of mass transport through the human epidermis is developed, consisting of free extracellular water, live cells (keratinocytes), and inert extracellular matrix. The model accounts for the superposition of active transport of Na +, K + and Cl − ions across the membrane of keratinocytes, and electromigration driven by an externally imposed electrostatic potential difference. Local cell volume is regulated by the transmembrane fluxes of water and ions according to a time-delay scheme which aims to keep the volume between certain thresholds. Numerical simulations reveal that either weak hyposmotic shocks or negative potential gradients smaller than one millivolt/micrometer across the epidermis can generate travelling waves in extracellular ion concentration. By monitoring the transmembrane (Na +−K + −ATPase) pump flux, we have found that maintaining a higher transepidermal potential gradient requires faster active transport through the cells.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2008.04.047</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2008-11, Vol.51 (23), p.5623-5632
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_35601101
source ScienceDirect Journals (5 years ago - present)
subjects Active transport
Electromigration
Epidermis
Ion pumps
Keratinocytes
Osmotic shock
title Water and solute active transport through human epidermis: Contribution of electromigration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20and%20solute%20active%20transport%20through%20human%20epidermis:%20Contribution%20of%20electromigration&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Falkenberg,%20Cibele%20V.&rft.date=2008-11-01&rft.volume=51&rft.issue=23&rft.spage=5623&rft.epage=5632&rft.pages=5623-5632&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2008.04.047&rft_dat=%3Cproquest_cross%3E35601101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35601101&rft_id=info:pmid/&rft_els_id=S001793100800255X&rfr_iscdi=true