Water and solute active transport through human epidermis: Contribution of electromigration
A triphasic, coarse-grained model of mass transport through the human epidermis is developed, consisting of free extracellular water, live cells (keratinocytes), and inert extracellular matrix. The model accounts for the superposition of active transport of Na +, K + and Cl − ions across the membran...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2008-11, Vol.51 (23), p.5623-5632 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5632 |
---|---|
container_issue | 23 |
container_start_page | 5623 |
container_title | International journal of heat and mass transfer |
container_volume | 51 |
creator | Falkenberg, Cibele V. Georgiadis, John G. |
description | A triphasic, coarse-grained model of mass transport through the human epidermis is developed, consisting of free extracellular water, live cells (keratinocytes), and inert extracellular matrix. The model accounts for the superposition of active transport of Na
+, K
+ and Cl
− ions across the membrane of keratinocytes, and electromigration driven by an externally imposed electrostatic potential difference. Local cell volume is regulated by the transmembrane fluxes of water and ions according to a time-delay scheme which aims to keep the volume between certain thresholds. Numerical simulations reveal that either weak hyposmotic shocks or negative potential gradients smaller than one millivolt/micrometer across the epidermis can generate travelling waves in extracellular ion concentration. By monitoring the transmembrane (Na
+−K
+ −ATPase) pump flux, we have found that maintaining a higher transepidermal potential gradient requires faster active transport through the cells. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2008.04.047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35601101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001793100800255X</els_id><sourcerecordid>35601101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-56e19b895ac281983ee8eb1c99c637feb72b47f4903459e0245754d1df33f2543</originalsourceid><addsrcrecordid>eNqNkE9LxDAQxYMouK5-h5zES9ekSZvGk7L4lwUvigcPIU2nbpa2WZN0wW9v6nrzIgwMM_P4Me8hdEHJghJaXm4WdrMGHXsdQvR6CC34RU5ItSA8lThAM1oJmeW0kodoRggVmWSUHKOTEDbTSHg5Q-9vOoLHemhwcN0YAWsT7Q7wD3PrfMRx7d34scbrsdcDhq1twPc2XOGlG6K39RitG7BrMXRgone9_fB62p2io1Z3Ac5--xy93t2-LB-y1fP94_JmlRkmWMyKEqisK1lok1dUVgyggpoaKU3JRAu1yGsuWi4J44UEkvNCFLyhTctYmxeczdH5nrv17nOEEFV6z0DX6QHcGBQrSkJTaEl4vRca70Lw0Kqtt732X4oSNaWqNupvqmpKVRGeSiTE0x4BydDOpmswFgYDjfXJvWqc_T_sG_Byjyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35601101</pqid></control><display><type>article</type><title>Water and solute active transport through human epidermis: Contribution of electromigration</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Falkenberg, Cibele V. ; Georgiadis, John G.</creator><creatorcontrib>Falkenberg, Cibele V. ; Georgiadis, John G.</creatorcontrib><description>A triphasic, coarse-grained model of mass transport through the human epidermis is developed, consisting of free extracellular water, live cells (keratinocytes), and inert extracellular matrix. The model accounts for the superposition of active transport of Na
+, K
+ and Cl
− ions across the membrane of keratinocytes, and electromigration driven by an externally imposed electrostatic potential difference. Local cell volume is regulated by the transmembrane fluxes of water and ions according to a time-delay scheme which aims to keep the volume between certain thresholds. Numerical simulations reveal that either weak hyposmotic shocks or negative potential gradients smaller than one millivolt/micrometer across the epidermis can generate travelling waves in extracellular ion concentration. By monitoring the transmembrane (Na
+−K
+ −ATPase) pump flux, we have found that maintaining a higher transepidermal potential gradient requires faster active transport through the cells.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2008.04.047</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Active transport ; Electromigration ; Epidermis ; Ion pumps ; Keratinocytes ; Osmotic shock</subject><ispartof>International journal of heat and mass transfer, 2008-11, Vol.51 (23), p.5623-5632</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-56e19b895ac281983ee8eb1c99c637feb72b47f4903459e0245754d1df33f2543</citedby><cites>FETCH-LOGICAL-c373t-56e19b895ac281983ee8eb1c99c637feb72b47f4903459e0245754d1df33f2543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.04.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Falkenberg, Cibele V.</creatorcontrib><creatorcontrib>Georgiadis, John G.</creatorcontrib><title>Water and solute active transport through human epidermis: Contribution of electromigration</title><title>International journal of heat and mass transfer</title><description>A triphasic, coarse-grained model of mass transport through the human epidermis is developed, consisting of free extracellular water, live cells (keratinocytes), and inert extracellular matrix. The model accounts for the superposition of active transport of Na
+, K
+ and Cl
− ions across the membrane of keratinocytes, and electromigration driven by an externally imposed electrostatic potential difference. Local cell volume is regulated by the transmembrane fluxes of water and ions according to a time-delay scheme which aims to keep the volume between certain thresholds. Numerical simulations reveal that either weak hyposmotic shocks or negative potential gradients smaller than one millivolt/micrometer across the epidermis can generate travelling waves in extracellular ion concentration. By monitoring the transmembrane (Na
+−K
+ −ATPase) pump flux, we have found that maintaining a higher transepidermal potential gradient requires faster active transport through the cells.</description><subject>Active transport</subject><subject>Electromigration</subject><subject>Epidermis</subject><subject>Ion pumps</subject><subject>Keratinocytes</subject><subject>Osmotic shock</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LxDAQxYMouK5-h5zES9ekSZvGk7L4lwUvigcPIU2nbpa2WZN0wW9v6nrzIgwMM_P4Me8hdEHJghJaXm4WdrMGHXsdQvR6CC34RU5ItSA8lThAM1oJmeW0kodoRggVmWSUHKOTEDbTSHg5Q-9vOoLHemhwcN0YAWsT7Q7wD3PrfMRx7d34scbrsdcDhq1twPc2XOGlG6K39RitG7BrMXRgone9_fB62p2io1Z3Ac5--xy93t2-LB-y1fP94_JmlRkmWMyKEqisK1lok1dUVgyggpoaKU3JRAu1yGsuWi4J44UEkvNCFLyhTctYmxeczdH5nrv17nOEEFV6z0DX6QHcGBQrSkJTaEl4vRca70Lw0Kqtt732X4oSNaWqNupvqmpKVRGeSiTE0x4BydDOpmswFgYDjfXJvWqc_T_sG_Byjyk</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Falkenberg, Cibele V.</creator><creator>Georgiadis, John G.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20081101</creationdate><title>Water and solute active transport through human epidermis: Contribution of electromigration</title><author>Falkenberg, Cibele V. ; Georgiadis, John G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-56e19b895ac281983ee8eb1c99c637feb72b47f4903459e0245754d1df33f2543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Active transport</topic><topic>Electromigration</topic><topic>Epidermis</topic><topic>Ion pumps</topic><topic>Keratinocytes</topic><topic>Osmotic shock</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falkenberg, Cibele V.</creatorcontrib><creatorcontrib>Georgiadis, John G.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falkenberg, Cibele V.</au><au>Georgiadis, John G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water and solute active transport through human epidermis: Contribution of electromigration</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2008-11-01</date><risdate>2008</risdate><volume>51</volume><issue>23</issue><spage>5623</spage><epage>5632</epage><pages>5623-5632</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>A triphasic, coarse-grained model of mass transport through the human epidermis is developed, consisting of free extracellular water, live cells (keratinocytes), and inert extracellular matrix. The model accounts for the superposition of active transport of Na
+, K
+ and Cl
− ions across the membrane of keratinocytes, and electromigration driven by an externally imposed electrostatic potential difference. Local cell volume is regulated by the transmembrane fluxes of water and ions according to a time-delay scheme which aims to keep the volume between certain thresholds. Numerical simulations reveal that either weak hyposmotic shocks or negative potential gradients smaller than one millivolt/micrometer across the epidermis can generate travelling waves in extracellular ion concentration. By monitoring the transmembrane (Na
+−K
+ −ATPase) pump flux, we have found that maintaining a higher transepidermal potential gradient requires faster active transport through the cells.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2008.04.047</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2008-11, Vol.51 (23), p.5623-5632 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_35601101 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Active transport Electromigration Epidermis Ion pumps Keratinocytes Osmotic shock |
title | Water and solute active transport through human epidermis: Contribution of electromigration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20and%20solute%20active%20transport%20through%20human%20epidermis:%20Contribution%20of%20electromigration&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Falkenberg,%20Cibele%20V.&rft.date=2008-11-01&rft.volume=51&rft.issue=23&rft.spage=5623&rft.epage=5632&rft.pages=5623-5632&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2008.04.047&rft_dat=%3Cproquest_cross%3E35601101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35601101&rft_id=info:pmid/&rft_els_id=S001793100800255X&rfr_iscdi=true |