Theoretical and numerical analyses of rotating discs of non-uniform thickness and density

Theoretical and numerical methods are used for stress–strain analysis of rotating discs with non-uniform thickness and density. An elastic–linear hardening material is assumed. A theoretical solution employs a technique called variable material properties (VMP) theory. A numerical solution is based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of pressure vessels and piping 2008-10, Vol.85 (10), p.694-700
Hauptverfasser: Hojjati, M.H., Hassani, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 700
container_issue 10
container_start_page 694
container_title The International journal of pressure vessels and piping
container_volume 85
creator Hojjati, M.H.
Hassani, A.
description Theoretical and numerical methods are used for stress–strain analysis of rotating discs with non-uniform thickness and density. An elastic–linear hardening material is assumed. A theoretical solution employs a technique called variable material properties (VMP) theory. A numerical solution is based on solving the governing differential equation using Runge–Kutta's method for elastic and plastic regimes. Finite element modelling of the problem has also been carried out using commercially available software. The results of the three methods are presented and compared and generally show good agreement. The suggested VMP method provides reliable means for complex discs for which there are no exact solutions. Although a specific disc profile has been studied here, the VMP method shows no restriction for the solution of any other disc profiles.
doi_str_mv 10.1016/j.ijpvp.2008.02.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35578942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308016108000379</els_id><sourcerecordid>35578942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-e3325d03f7a8b782414f53c812d7f5de08a07ff53140c97b0ce01e5f088bc4703</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1iywJZwjpPaHRhQxZdUiaUMTJbrnKlLagc7Qeq_x_0QI9PJp-feOz-EXFMoKNDJ3bqw6-6nK0oAUUBZAIUTMqKCT3NWV_SUjICByBNKz8lFjGsAyqGejMjHYoU-YG-1ajPlmswNGwzHl2q3EWPmTRZ8r3rrPrPGRr3vOO_ywVnjwybrV1Z_OYxxn9Cgi7bfXpIzo9qIV8c6Ju9Pj4vZSz5_e36dPcxzzSZVnyNjZd0AM1yJJRdlRStTMy1o2XBTNwhCATepRSvQU74EjUCxNiDEUlcc2JjcHnK74L8HjL3cpBuxbZVDP0TJ6pqLaVUmkB1AHXyMAY3sgt2osJUU5E6jXMu9RrnTKKGUSWOaujnGq5ismKCctvFvtARescmUJe7-wGH664_FIKO26DQ2NqDuZePtv3t-ASXjilQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35578942</pqid></control><display><type>article</type><title>Theoretical and numerical analyses of rotating discs of non-uniform thickness and density</title><source>Elsevier ScienceDirect Journals</source><creator>Hojjati, M.H. ; Hassani, A.</creator><creatorcontrib>Hojjati, M.H. ; Hassani, A.</creatorcontrib><description>Theoretical and numerical methods are used for stress–strain analysis of rotating discs with non-uniform thickness and density. An elastic–linear hardening material is assumed. A theoretical solution employs a technique called variable material properties (VMP) theory. A numerical solution is based on solving the governing differential equation using Runge–Kutta's method for elastic and plastic regimes. Finite element modelling of the problem has also been carried out using commercially available software. The results of the three methods are presented and compared and generally show good agreement. The suggested VMP method provides reliable means for complex discs for which there are no exact solutions. Although a specific disc profile has been studied here, the VMP method shows no restriction for the solution of any other disc profiles.</description><identifier>ISSN: 0308-0161</identifier><identifier>EISSN: 1879-3541</identifier><identifier>DOI: 10.1016/j.ijpvp.2008.02.010</identifier><identifier>CODEN: PRVPAS</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Exact sciences and technology ; Finite element analysis ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Mechanical engineering. Machine design ; Numerical solution ; Physics ; Rotating disc ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Steel design ; Steel tanks and pressure vessels; boiler manufacturing ; Structural and continuum mechanics ; Variable material property</subject><ispartof>The International journal of pressure vessels and piping, 2008-10, Vol.85 (10), p.694-700</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-e3325d03f7a8b782414f53c812d7f5de08a07ff53140c97b0ce01e5f088bc4703</citedby><cites>FETCH-LOGICAL-c364t-e3325d03f7a8b782414f53c812d7f5de08a07ff53140c97b0ce01e5f088bc4703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0308016108000379$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20743693$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hojjati, M.H.</creatorcontrib><creatorcontrib>Hassani, A.</creatorcontrib><title>Theoretical and numerical analyses of rotating discs of non-uniform thickness and density</title><title>The International journal of pressure vessels and piping</title><description>Theoretical and numerical methods are used for stress–strain analysis of rotating discs with non-uniform thickness and density. An elastic–linear hardening material is assumed. A theoretical solution employs a technique called variable material properties (VMP) theory. A numerical solution is based on solving the governing differential equation using Runge–Kutta's method for elastic and plastic regimes. Finite element modelling of the problem has also been carried out using commercially available software. The results of the three methods are presented and compared and generally show good agreement. The suggested VMP method provides reliable means for complex discs for which there are no exact solutions. Although a specific disc profile has been studied here, the VMP method shows no restriction for the solution of any other disc profiles.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Mechanical engineering. Machine design</subject><subject>Numerical solution</subject><subject>Physics</subject><subject>Rotating disc</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Steel design</subject><subject>Steel tanks and pressure vessels; boiler manufacturing</subject><subject>Structural and continuum mechanics</subject><subject>Variable material property</subject><issn>0308-0161</issn><issn>1879-3541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1iywJZwjpPaHRhQxZdUiaUMTJbrnKlLagc7Qeq_x_0QI9PJp-feOz-EXFMoKNDJ3bqw6-6nK0oAUUBZAIUTMqKCT3NWV_SUjICByBNKz8lFjGsAyqGejMjHYoU-YG-1ajPlmswNGwzHl2q3EWPmTRZ8r3rrPrPGRr3vOO_ywVnjwybrV1Z_OYxxn9Cgi7bfXpIzo9qIV8c6Ju9Pj4vZSz5_e36dPcxzzSZVnyNjZd0AM1yJJRdlRStTMy1o2XBTNwhCATepRSvQU74EjUCxNiDEUlcc2JjcHnK74L8HjL3cpBuxbZVDP0TJ6pqLaVUmkB1AHXyMAY3sgt2osJUU5E6jXMu9RrnTKKGUSWOaujnGq5ismKCctvFvtARescmUJe7-wGH664_FIKO26DQ2NqDuZePtv3t-ASXjilQ</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Hojjati, M.H.</creator><creator>Hassani, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20081001</creationdate><title>Theoretical and numerical analyses of rotating discs of non-uniform thickness and density</title><author>Hojjati, M.H. ; Hassani, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-e3325d03f7a8b782414f53c812d7f5de08a07ff53140c97b0ce01e5f088bc4703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Mechanical engineering. Machine design</topic><topic>Numerical solution</topic><topic>Physics</topic><topic>Rotating disc</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Steel design</topic><topic>Steel tanks and pressure vessels; boiler manufacturing</topic><topic>Structural and continuum mechanics</topic><topic>Variable material property</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hojjati, M.H.</creatorcontrib><creatorcontrib>Hassani, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>The International journal of pressure vessels and piping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hojjati, M.H.</au><au>Hassani, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical and numerical analyses of rotating discs of non-uniform thickness and density</atitle><jtitle>The International journal of pressure vessels and piping</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>85</volume><issue>10</issue><spage>694</spage><epage>700</epage><pages>694-700</pages><issn>0308-0161</issn><eissn>1879-3541</eissn><coden>PRVPAS</coden><abstract>Theoretical and numerical methods are used for stress–strain analysis of rotating discs with non-uniform thickness and density. An elastic–linear hardening material is assumed. A theoretical solution employs a technique called variable material properties (VMP) theory. A numerical solution is based on solving the governing differential equation using Runge–Kutta's method for elastic and plastic regimes. Finite element modelling of the problem has also been carried out using commercially available software. The results of the three methods are presented and compared and generally show good agreement. The suggested VMP method provides reliable means for complex discs for which there are no exact solutions. Although a specific disc profile has been studied here, the VMP method shows no restriction for the solution of any other disc profiles.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijpvp.2008.02.010</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-0161
ispartof The International journal of pressure vessels and piping, 2008-10, Vol.85 (10), p.694-700
issn 0308-0161
1879-3541
language eng
recordid cdi_proquest_miscellaneous_35578942
source Elsevier ScienceDirect Journals
subjects Applied sciences
Exact sciences and technology
Finite element analysis
Fundamental areas of phenomenology (including applications)
Inelasticity (thermoplasticity, viscoplasticity...)
Mechanical engineering. Machine design
Numerical solution
Physics
Rotating disc
Solid mechanics
Static elasticity (thermoelasticity...)
Steel design
Steel tanks and pressure vessels
boiler manufacturing
Structural and continuum mechanics
Variable material property
title Theoretical and numerical analyses of rotating discs of non-uniform thickness and density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20and%20numerical%20analyses%20of%20rotating%20discs%20of%20non-uniform%20thickness%20and%20density&rft.jtitle=The%20International%20journal%20of%20pressure%20vessels%20and%20piping&rft.au=Hojjati,%20M.H.&rft.date=2008-10-01&rft.volume=85&rft.issue=10&rft.spage=694&rft.epage=700&rft.pages=694-700&rft.issn=0308-0161&rft.eissn=1879-3541&rft.coden=PRVPAS&rft_id=info:doi/10.1016/j.ijpvp.2008.02.010&rft_dat=%3Cproquest_cross%3E35578942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35578942&rft_id=info:pmid/&rft_els_id=S0308016108000379&rfr_iscdi=true