Proscriptive Bayesian Programming and Maximum Entropy: a Preliminary Study

Some problems found in robotics systems, as avoiding obstacles, can be better described using proscriptive commands, where only prohibited actions are indicated in contrast to prescriptive situations, which demands that a specific command be specified. An interesting question arises regarding the po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Koike, Carla Cavalcante
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue
container_start_page 301
container_title
container_volume 1073
creator Koike, Carla Cavalcante
description Some problems found in robotics systems, as avoiding obstacles, can be better described using proscriptive commands, where only prohibited actions are indicated in contrast to prescriptive situations, which demands that a specific command be specified. An interesting question arises regarding the possibility to learn automatically if proscriptive commands are suitable and which parametric function could be better applied. Lately, a great variety of problems in robotics domain are object of researches using probabilistic methods, including the use of Maximum Entropy in automatic learning for robot control systems. This works presents a preliminary study on automatic learning of proscriptive robot control using maximum entropy and using Bayesian Programming. It is verified whether Maximum entropy and related methods can favour proscriptive commands in an obstacle avoidance task executed by a mobile robot.
doi_str_mv 10.1063/1.3039013
format Conference Proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_35569595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35569595</sourcerecordid><originalsourceid>FETCH-LOGICAL-p116t-ee5cc0f57f4dfa8a7d6729de70a25d444426f82225cb61240fe6c898176370993</originalsourceid><addsrcrecordid>eNotjMtKAzEYRgMq2FYXvkFW7qb-uU_caanaUlFQwV2JuZTI3ExmxHl7B_TbHDgcPoQuCCwJSHZFlgyYBsKO0BwUExwkcH2MZgCaF5Sz91M0z_kTgGqlyhnaPqc22xS7Pn57fGtGn6Np8GQPydR1bA7YNA4_mp9YDzVeN31qu_EamynxVZwCk0b80g9uPEMnwVTZn_9zgd7u1q-rh2L3dL9Z3eyKjhDZF94LayEIFbgLpjTKSUW18woMFY5PozKUlFJhPyShHIKXttQlUZIp0Jot0OXfb5far8Hnfl_HbH1Vmca3Q94zIaQWWrBfVA1PKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>35569595</pqid></control><display><type>conference_proceeding</type><title>Proscriptive Bayesian Programming and Maximum Entropy: a Preliminary Study</title><source>AIP Journals Complete</source><creator>Koike, Carla Cavalcante</creator><creatorcontrib>Koike, Carla Cavalcante</creatorcontrib><description>Some problems found in robotics systems, as avoiding obstacles, can be better described using proscriptive commands, where only prohibited actions are indicated in contrast to prescriptive situations, which demands that a specific command be specified. An interesting question arises regarding the possibility to learn automatically if proscriptive commands are suitable and which parametric function could be better applied. Lately, a great variety of problems in robotics domain are object of researches using probabilistic methods, including the use of Maximum Entropy in automatic learning for robot control systems. This works presents a preliminary study on automatic learning of proscriptive robot control using maximum entropy and using Bayesian Programming. It is verified whether Maximum entropy and related methods can favour proscriptive commands in an obstacle avoidance task executed by a mobile robot.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 0735406049</identifier><identifier>ISBN: 9780735406049</identifier><identifier>DOI: 10.1063/1.3039013</identifier><language>eng</language><ispartof>Bayesian Inference and Maximum Entropy Methods in Science and Engineering (28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering) (AIP Conference Proceedings Volume 1073), 2008, Vol.1073, p.301-308</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Koike, Carla Cavalcante</creatorcontrib><title>Proscriptive Bayesian Programming and Maximum Entropy: a Preliminary Study</title><title>Bayesian Inference and Maximum Entropy Methods in Science and Engineering (28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering) (AIP Conference Proceedings Volume 1073)</title><description>Some problems found in robotics systems, as avoiding obstacles, can be better described using proscriptive commands, where only prohibited actions are indicated in contrast to prescriptive situations, which demands that a specific command be specified. An interesting question arises regarding the possibility to learn automatically if proscriptive commands are suitable and which parametric function could be better applied. Lately, a great variety of problems in robotics domain are object of researches using probabilistic methods, including the use of Maximum Entropy in automatic learning for robot control systems. This works presents a preliminary study on automatic learning of proscriptive robot control using maximum entropy and using Bayesian Programming. It is verified whether Maximum entropy and related methods can favour proscriptive commands in an obstacle avoidance task executed by a mobile robot.</description><issn>0094-243X</issn><isbn>0735406049</isbn><isbn>9780735406049</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjMtKAzEYRgMq2FYXvkFW7qb-uU_caanaUlFQwV2JuZTI3ExmxHl7B_TbHDgcPoQuCCwJSHZFlgyYBsKO0BwUExwkcH2MZgCaF5Sz91M0z_kTgGqlyhnaPqc22xS7Pn57fGtGn6Np8GQPydR1bA7YNA4_mp9YDzVeN31qu_EamynxVZwCk0b80g9uPEMnwVTZn_9zgd7u1q-rh2L3dL9Z3eyKjhDZF94LayEIFbgLpjTKSUW18woMFY5PozKUlFJhPyShHIKXttQlUZIp0Jot0OXfb5far8Hnfl_HbH1Vmca3Q94zIaQWWrBfVA1PKQ</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Koike, Carla Cavalcante</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20080101</creationdate><title>Proscriptive Bayesian Programming and Maximum Entropy: a Preliminary Study</title><author>Koike, Carla Cavalcante</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p116t-ee5cc0f57f4dfa8a7d6729de70a25d444426f82225cb61240fe6c898176370993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koike, Carla Cavalcante</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koike, Carla Cavalcante</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Proscriptive Bayesian Programming and Maximum Entropy: a Preliminary Study</atitle><btitle>Bayesian Inference and Maximum Entropy Methods in Science and Engineering (28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering) (AIP Conference Proceedings Volume 1073)</btitle><date>2008-01-01</date><risdate>2008</risdate><volume>1073</volume><spage>301</spage><epage>308</epage><pages>301-308</pages><issn>0094-243X</issn><isbn>0735406049</isbn><isbn>9780735406049</isbn><abstract>Some problems found in robotics systems, as avoiding obstacles, can be better described using proscriptive commands, where only prohibited actions are indicated in contrast to prescriptive situations, which demands that a specific command be specified. An interesting question arises regarding the possibility to learn automatically if proscriptive commands are suitable and which parametric function could be better applied. Lately, a great variety of problems in robotics domain are object of researches using probabilistic methods, including the use of Maximum Entropy in automatic learning for robot control systems. This works presents a preliminary study on automatic learning of proscriptive robot control using maximum entropy and using Bayesian Programming. It is verified whether Maximum entropy and related methods can favour proscriptive commands in an obstacle avoidance task executed by a mobile robot.</abstract><doi>10.1063/1.3039013</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof Bayesian Inference and Maximum Entropy Methods in Science and Engineering (28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering) (AIP Conference Proceedings Volume 1073), 2008, Vol.1073, p.301-308
issn 0094-243X
language eng
recordid cdi_proquest_miscellaneous_35569595
source AIP Journals Complete
title Proscriptive Bayesian Programming and Maximum Entropy: a Preliminary Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Proscriptive%20Bayesian%20Programming%20and%20Maximum%20Entropy:%20a%20Preliminary%20Study&rft.btitle=Bayesian%20Inference%20and%20Maximum%20Entropy%20Methods%20in%20Science%20and%20Engineering%20(28th%20International%20Workshop%20on%20Bayesian%20Inference%20and%20Maximum%20Entropy%20Methods%20in%20Science%20and%20Engineering)%20(AIP%20Conference%20Proceedings%20Volume%201073)&rft.au=Koike,%20Carla%20Cavalcante&rft.date=2008-01-01&rft.volume=1073&rft.spage=301&rft.epage=308&rft.pages=301-308&rft.issn=0094-243X&rft.isbn=0735406049&rft.isbn_list=9780735406049&rft_id=info:doi/10.1063/1.3039013&rft_dat=%3Cproquest%3E35569595%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35569595&rft_id=info:pmid/&rfr_iscdi=true