The integration of alternative contact cleaning techniques for future DRAM technology nodes

Conventional DRAM contact to Si cleaning methods are using wet HF-based chemistry to remove the native SiO 2 from the contact bottom and reduce the contact resistance [M.R. Baklanov, et al., J. Electrochem. Soc. 145 (9) (1998) 3240–3246]. With further scaling of the contact dimensions the distance b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2008-10, Vol.85 (10), p.2025-2027
Hauptverfasser: Stavrev, Momtchil, Fitz, Clemens, Thuemmel, Ines, Beckert, Audrey, Schupke, Kristin, Schmidbauer, Sven, Graf, Werner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2027
container_issue 10
container_start_page 2025
container_title Microelectronic engineering
container_volume 85
creator Stavrev, Momtchil
Fitz, Clemens
Thuemmel, Ines
Beckert, Audrey
Schupke, Kristin
Schmidbauer, Sven
Graf, Werner
description Conventional DRAM contact to Si cleaning methods are using wet HF-based chemistry to remove the native SiO 2 from the contact bottom and reduce the contact resistance [M.R. Baklanov, et al., J. Electrochem. Soc. 145 (9) (1998) 3240–3246]. With further scaling of the contact dimensions the distance between the contacts to the bitline (CB) and the adjacent gate conductors (GC) is decreasing. This is leading to increased parasitic capacitance between the CB and the GC and increased total bitline capacitance. The high bitline capacitance results in large signal delays, poor transfer ratio and thus bad signal margin and worse retention. In addition it is a general limitation for the number of cells attached to this bitline. For future DRAMs the need for small chip size is driving the reduction of the bitline capacitance and keeping the distance between the CB and the GC becomes a critical challenge. Typically, the material separating the CB from the GC is LPCVD TEOS. Furthermore, the selectivity of the wet HF-based chemistry of the as-deposited LPCVD TEOS to thermal SiO 2 is in the order of 3:1. This is resulting in high removal amount of LPCVD TEOS for a given removal of native SiO 2.
doi_str_mv 10.1016/j.mee.2008.07.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35568953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167931708003213</els_id><sourcerecordid>35568953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-d745c9e8bbac71dc6e6708c2058c9f15a96ca6ac08e2287cce8778524193e5083</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKs_wFsuets12W02WTyV-oSKIPXkIaSzszVlm2iSCv57UyoePQ3DfPP6CDnnrOSMN1frcoNYVoypksmScX5ARlzJuhCiUYdklBlZtDWXx-QkxjXL-YSpEXlbvCO1LuEqmGS9o76nZkgYXE6_kIJ3yUCiMKBx1q1oQnh39nOLkfY-0H6btgHpzcv0aV_yg199U-c7jKfkqDdDxLPfOCavd7eL2UMxf75_nE3nBdScpaKTEwEtquXSgOQdNNhIpqBiQkHbc2HaBkxjgCmsKiUBUEmpRDXhbY2CqXpMLvdzP4LfHZb0xkbAYTAO_TbqeuegFXUG-R6E4GMM2OuPYDcmfGvO9E6jXuusUe80aiZ11ph7Ln6Hmwhm6INxYONfY8UUrysuMne95zB_-mUx6AgWHWBnA0LSnbf_bPkBudWIcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35568953</pqid></control><display><type>article</type><title>The integration of alternative contact cleaning techniques for future DRAM technology nodes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Stavrev, Momtchil ; Fitz, Clemens ; Thuemmel, Ines ; Beckert, Audrey ; Schupke, Kristin ; Schmidbauer, Sven ; Graf, Werner</creator><creatorcontrib>Stavrev, Momtchil ; Fitz, Clemens ; Thuemmel, Ines ; Beckert, Audrey ; Schupke, Kristin ; Schmidbauer, Sven ; Graf, Werner</creatorcontrib><description>Conventional DRAM contact to Si cleaning methods are using wet HF-based chemistry to remove the native SiO 2 from the contact bottom and reduce the contact resistance [M.R. Baklanov, et al., J. Electrochem. Soc. 145 (9) (1998) 3240–3246]. With further scaling of the contact dimensions the distance between the contacts to the bitline (CB) and the adjacent gate conductors (GC) is decreasing. This is leading to increased parasitic capacitance between the CB and the GC and increased total bitline capacitance. The high bitline capacitance results in large signal delays, poor transfer ratio and thus bad signal margin and worse retention. In addition it is a general limitation for the number of cells attached to this bitline. For future DRAMs the need for small chip size is driving the reduction of the bitline capacitance and keeping the distance between the CB and the GC becomes a critical challenge. Typically, the material separating the CB from the GC is LPCVD TEOS. Furthermore, the selectivity of the wet HF-based chemistry of the as-deposited LPCVD TEOS to thermal SiO 2 is in the order of 3:1. This is resulting in high removal amount of LPCVD TEOS for a given removal of native SiO 2.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2008.07.011</identifier><identifier>CODEN: MIENEF</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Capacitance ; Clean ; Contact ; Design. Technologies. Operation analysis. Testing ; Electronics ; Exact sciences and technology ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Microelectronic fabrication (materials and surfaces technology) ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; TEOS</subject><ispartof>Microelectronic engineering, 2008-10, Vol.85 (10), p.2025-2027</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c310t-d745c9e8bbac71dc6e6708c2058c9f15a96ca6ac08e2287cce8778524193e5083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mee.2008.07.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,3551,23935,23936,25145,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20813215$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stavrev, Momtchil</creatorcontrib><creatorcontrib>Fitz, Clemens</creatorcontrib><creatorcontrib>Thuemmel, Ines</creatorcontrib><creatorcontrib>Beckert, Audrey</creatorcontrib><creatorcontrib>Schupke, Kristin</creatorcontrib><creatorcontrib>Schmidbauer, Sven</creatorcontrib><creatorcontrib>Graf, Werner</creatorcontrib><title>The integration of alternative contact cleaning techniques for future DRAM technology nodes</title><title>Microelectronic engineering</title><description>Conventional DRAM contact to Si cleaning methods are using wet HF-based chemistry to remove the native SiO 2 from the contact bottom and reduce the contact resistance [M.R. Baklanov, et al., J. Electrochem. Soc. 145 (9) (1998) 3240–3246]. With further scaling of the contact dimensions the distance between the contacts to the bitline (CB) and the adjacent gate conductors (GC) is decreasing. This is leading to increased parasitic capacitance between the CB and the GC and increased total bitline capacitance. The high bitline capacitance results in large signal delays, poor transfer ratio and thus bad signal margin and worse retention. In addition it is a general limitation for the number of cells attached to this bitline. For future DRAMs the need for small chip size is driving the reduction of the bitline capacitance and keeping the distance between the CB and the GC becomes a critical challenge. Typically, the material separating the CB from the GC is LPCVD TEOS. Furthermore, the selectivity of the wet HF-based chemistry of the as-deposited LPCVD TEOS to thermal SiO 2 is in the order of 3:1. This is resulting in high removal amount of LPCVD TEOS for a given removal of native SiO 2.</description><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Clean</subject><subject>Contact</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>TEOS</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWKs_wFsuets12W02WTyV-oSKIPXkIaSzszVlm2iSCv57UyoePQ3DfPP6CDnnrOSMN1frcoNYVoypksmScX5ARlzJuhCiUYdklBlZtDWXx-QkxjXL-YSpEXlbvCO1LuEqmGS9o76nZkgYXE6_kIJ3yUCiMKBx1q1oQnh39nOLkfY-0H6btgHpzcv0aV_yg199U-c7jKfkqDdDxLPfOCavd7eL2UMxf75_nE3nBdScpaKTEwEtquXSgOQdNNhIpqBiQkHbc2HaBkxjgCmsKiUBUEmpRDXhbY2CqXpMLvdzP4LfHZb0xkbAYTAO_TbqeuegFXUG-R6E4GMM2OuPYDcmfGvO9E6jXuusUe80aiZ11ph7Ln6Hmwhm6INxYONfY8UUrysuMne95zB_-mUx6AgWHWBnA0LSnbf_bPkBudWIcg</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Stavrev, Momtchil</creator><creator>Fitz, Clemens</creator><creator>Thuemmel, Ines</creator><creator>Beckert, Audrey</creator><creator>Schupke, Kristin</creator><creator>Schmidbauer, Sven</creator><creator>Graf, Werner</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20081001</creationdate><title>The integration of alternative contact cleaning techniques for future DRAM technology nodes</title><author>Stavrev, Momtchil ; Fitz, Clemens ; Thuemmel, Ines ; Beckert, Audrey ; Schupke, Kristin ; Schmidbauer, Sven ; Graf, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-d745c9e8bbac71dc6e6708c2058c9f15a96ca6ac08e2287cce8778524193e5083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Clean</topic><topic>Contact</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>TEOS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stavrev, Momtchil</creatorcontrib><creatorcontrib>Fitz, Clemens</creatorcontrib><creatorcontrib>Thuemmel, Ines</creatorcontrib><creatorcontrib>Beckert, Audrey</creatorcontrib><creatorcontrib>Schupke, Kristin</creatorcontrib><creatorcontrib>Schmidbauer, Sven</creatorcontrib><creatorcontrib>Graf, Werner</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stavrev, Momtchil</au><au>Fitz, Clemens</au><au>Thuemmel, Ines</au><au>Beckert, Audrey</au><au>Schupke, Kristin</au><au>Schmidbauer, Sven</au><au>Graf, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The integration of alternative contact cleaning techniques for future DRAM technology nodes</atitle><jtitle>Microelectronic engineering</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>85</volume><issue>10</issue><spage>2025</spage><epage>2027</epage><pages>2025-2027</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><coden>MIENEF</coden><abstract>Conventional DRAM contact to Si cleaning methods are using wet HF-based chemistry to remove the native SiO 2 from the contact bottom and reduce the contact resistance [M.R. Baklanov, et al., J. Electrochem. Soc. 145 (9) (1998) 3240–3246]. With further scaling of the contact dimensions the distance between the contacts to the bitline (CB) and the adjacent gate conductors (GC) is decreasing. This is leading to increased parasitic capacitance between the CB and the GC and increased total bitline capacitance. The high bitline capacitance results in large signal delays, poor transfer ratio and thus bad signal margin and worse retention. In addition it is a general limitation for the number of cells attached to this bitline. For future DRAMs the need for small chip size is driving the reduction of the bitline capacitance and keeping the distance between the CB and the GC becomes a critical challenge. Typically, the material separating the CB from the GC is LPCVD TEOS. Furthermore, the selectivity of the wet HF-based chemistry of the as-deposited LPCVD TEOS to thermal SiO 2 is in the order of 3:1. This is resulting in high removal amount of LPCVD TEOS for a given removal of native SiO 2.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2008.07.011</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9317
ispartof Microelectronic engineering, 2008-10, Vol.85 (10), p.2025-2027
issn 0167-9317
1873-5568
language eng
recordid cdi_proquest_miscellaneous_35568953
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Capacitance
Clean
Contact
Design. Technologies. Operation analysis. Testing
Electronics
Exact sciences and technology
Integrated circuits
Integrated circuits by function (including memories and processors)
Microelectronic fabrication (materials and surfaces technology)
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
TEOS
title The integration of alternative contact cleaning techniques for future DRAM technology nodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20integration%20of%20alternative%20contact%20cleaning%20techniques%20for%20future%20DRAM%20technology%20nodes&rft.jtitle=Microelectronic%20engineering&rft.au=Stavrev,%20Momtchil&rft.date=2008-10-01&rft.volume=85&rft.issue=10&rft.spage=2025&rft.epage=2027&rft.pages=2025-2027&rft.issn=0167-9317&rft.eissn=1873-5568&rft.coden=MIENEF&rft_id=info:doi/10.1016/j.mee.2008.07.011&rft_dat=%3Cproquest_cross%3E35568953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35568953&rft_id=info:pmid/&rft_els_id=S0167931708003213&rfr_iscdi=true