The integration of alternative contact cleaning techniques for future DRAM technology nodes
Conventional DRAM contact to Si cleaning methods are using wet HF-based chemistry to remove the native SiO 2 from the contact bottom and reduce the contact resistance [M.R. Baklanov, et al., J. Electrochem. Soc. 145 (9) (1998) 3240–3246]. With further scaling of the contact dimensions the distance b...
Gespeichert in:
Veröffentlicht in: | Microelectronic engineering 2008-10, Vol.85 (10), p.2025-2027 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2027 |
---|---|
container_issue | 10 |
container_start_page | 2025 |
container_title | Microelectronic engineering |
container_volume | 85 |
creator | Stavrev, Momtchil Fitz, Clemens Thuemmel, Ines Beckert, Audrey Schupke, Kristin Schmidbauer, Sven Graf, Werner |
description | Conventional DRAM contact to Si cleaning methods are using wet HF-based chemistry to remove the native SiO
2 from the contact bottom and reduce the contact resistance [M.R. Baklanov, et al., J. Electrochem. Soc. 145 (9) (1998) 3240–3246]. With further scaling of the contact dimensions the distance between the contacts to the bitline (CB) and the adjacent gate conductors (GC) is decreasing. This is leading to increased parasitic capacitance between the CB and the GC and increased total bitline capacitance. The high bitline capacitance results in large signal delays, poor transfer ratio and thus bad signal margin and worse retention. In addition it is a general limitation for the number of cells attached to this bitline. For future DRAMs the need for small chip size is driving the reduction of the bitline capacitance and keeping the distance between the CB and the GC becomes a critical challenge. Typically, the material separating the CB from the GC is LPCVD TEOS. Furthermore, the selectivity of the wet HF-based chemistry of the as-deposited LPCVD TEOS to thermal SiO
2 is in the order of 3:1. This is resulting in high removal amount of LPCVD TEOS for a given removal of native SiO
2. |
doi_str_mv | 10.1016/j.mee.2008.07.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35568953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167931708003213</els_id><sourcerecordid>35568953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-d745c9e8bbac71dc6e6708c2058c9f15a96ca6ac08e2287cce8778524193e5083</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKs_wFsuets12W02WTyV-oSKIPXkIaSzszVlm2iSCv57UyoePQ3DfPP6CDnnrOSMN1frcoNYVoypksmScX5ARlzJuhCiUYdklBlZtDWXx-QkxjXL-YSpEXlbvCO1LuEqmGS9o76nZkgYXE6_kIJ3yUCiMKBx1q1oQnh39nOLkfY-0H6btgHpzcv0aV_yg199U-c7jKfkqDdDxLPfOCavd7eL2UMxf75_nE3nBdScpaKTEwEtquXSgOQdNNhIpqBiQkHbc2HaBkxjgCmsKiUBUEmpRDXhbY2CqXpMLvdzP4LfHZb0xkbAYTAO_TbqeuegFXUG-R6E4GMM2OuPYDcmfGvO9E6jXuusUe80aiZ11ph7Ln6Hmwhm6INxYONfY8UUrysuMne95zB_-mUx6AgWHWBnA0LSnbf_bPkBudWIcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35568953</pqid></control><display><type>article</type><title>The integration of alternative contact cleaning techniques for future DRAM technology nodes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Stavrev, Momtchil ; Fitz, Clemens ; Thuemmel, Ines ; Beckert, Audrey ; Schupke, Kristin ; Schmidbauer, Sven ; Graf, Werner</creator><creatorcontrib>Stavrev, Momtchil ; Fitz, Clemens ; Thuemmel, Ines ; Beckert, Audrey ; Schupke, Kristin ; Schmidbauer, Sven ; Graf, Werner</creatorcontrib><description>Conventional DRAM contact to Si cleaning methods are using wet HF-based chemistry to remove the native SiO
2 from the contact bottom and reduce the contact resistance [M.R. Baklanov, et al., J. Electrochem. Soc. 145 (9) (1998) 3240–3246]. With further scaling of the contact dimensions the distance between the contacts to the bitline (CB) and the adjacent gate conductors (GC) is decreasing. This is leading to increased parasitic capacitance between the CB and the GC and increased total bitline capacitance. The high bitline capacitance results in large signal delays, poor transfer ratio and thus bad signal margin and worse retention. In addition it is a general limitation for the number of cells attached to this bitline. For future DRAMs the need for small chip size is driving the reduction of the bitline capacitance and keeping the distance between the CB and the GC becomes a critical challenge. Typically, the material separating the CB from the GC is LPCVD TEOS. Furthermore, the selectivity of the wet HF-based chemistry of the as-deposited LPCVD TEOS to thermal SiO
2 is in the order of 3:1. This is resulting in high removal amount of LPCVD TEOS for a given removal of native SiO
2.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2008.07.011</identifier><identifier>CODEN: MIENEF</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Capacitance ; Clean ; Contact ; Design. Technologies. Operation analysis. Testing ; Electronics ; Exact sciences and technology ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Microelectronic fabrication (materials and surfaces technology) ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; TEOS</subject><ispartof>Microelectronic engineering, 2008-10, Vol.85 (10), p.2025-2027</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c310t-d745c9e8bbac71dc6e6708c2058c9f15a96ca6ac08e2287cce8778524193e5083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mee.2008.07.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,3551,23935,23936,25145,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20813215$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stavrev, Momtchil</creatorcontrib><creatorcontrib>Fitz, Clemens</creatorcontrib><creatorcontrib>Thuemmel, Ines</creatorcontrib><creatorcontrib>Beckert, Audrey</creatorcontrib><creatorcontrib>Schupke, Kristin</creatorcontrib><creatorcontrib>Schmidbauer, Sven</creatorcontrib><creatorcontrib>Graf, Werner</creatorcontrib><title>The integration of alternative contact cleaning techniques for future DRAM technology nodes</title><title>Microelectronic engineering</title><description>Conventional DRAM contact to Si cleaning methods are using wet HF-based chemistry to remove the native SiO
2 from the contact bottom and reduce the contact resistance [M.R. Baklanov, et al., J. Electrochem. Soc. 145 (9) (1998) 3240–3246]. With further scaling of the contact dimensions the distance between the contacts to the bitline (CB) and the adjacent gate conductors (GC) is decreasing. This is leading to increased parasitic capacitance between the CB and the GC and increased total bitline capacitance. The high bitline capacitance results in large signal delays, poor transfer ratio and thus bad signal margin and worse retention. In addition it is a general limitation for the number of cells attached to this bitline. For future DRAMs the need for small chip size is driving the reduction of the bitline capacitance and keeping the distance between the CB and the GC becomes a critical challenge. Typically, the material separating the CB from the GC is LPCVD TEOS. Furthermore, the selectivity of the wet HF-based chemistry of the as-deposited LPCVD TEOS to thermal SiO
2 is in the order of 3:1. This is resulting in high removal amount of LPCVD TEOS for a given removal of native SiO
2.</description><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Clean</subject><subject>Contact</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>TEOS</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWKs_wFsuets12W02WTyV-oSKIPXkIaSzszVlm2iSCv57UyoePQ3DfPP6CDnnrOSMN1frcoNYVoypksmScX5ARlzJuhCiUYdklBlZtDWXx-QkxjXL-YSpEXlbvCO1LuEqmGS9o76nZkgYXE6_kIJ3yUCiMKBx1q1oQnh39nOLkfY-0H6btgHpzcv0aV_yg199U-c7jKfkqDdDxLPfOCavd7eL2UMxf75_nE3nBdScpaKTEwEtquXSgOQdNNhIpqBiQkHbc2HaBkxjgCmsKiUBUEmpRDXhbY2CqXpMLvdzP4LfHZb0xkbAYTAO_TbqeuegFXUG-R6E4GMM2OuPYDcmfGvO9E6jXuusUe80aiZ11ph7Ln6Hmwhm6INxYONfY8UUrysuMne95zB_-mUx6AgWHWBnA0LSnbf_bPkBudWIcg</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Stavrev, Momtchil</creator><creator>Fitz, Clemens</creator><creator>Thuemmel, Ines</creator><creator>Beckert, Audrey</creator><creator>Schupke, Kristin</creator><creator>Schmidbauer, Sven</creator><creator>Graf, Werner</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20081001</creationdate><title>The integration of alternative contact cleaning techniques for future DRAM technology nodes</title><author>Stavrev, Momtchil ; Fitz, Clemens ; Thuemmel, Ines ; Beckert, Audrey ; Schupke, Kristin ; Schmidbauer, Sven ; Graf, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-d745c9e8bbac71dc6e6708c2058c9f15a96ca6ac08e2287cce8778524193e5083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Clean</topic><topic>Contact</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>TEOS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stavrev, Momtchil</creatorcontrib><creatorcontrib>Fitz, Clemens</creatorcontrib><creatorcontrib>Thuemmel, Ines</creatorcontrib><creatorcontrib>Beckert, Audrey</creatorcontrib><creatorcontrib>Schupke, Kristin</creatorcontrib><creatorcontrib>Schmidbauer, Sven</creatorcontrib><creatorcontrib>Graf, Werner</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stavrev, Momtchil</au><au>Fitz, Clemens</au><au>Thuemmel, Ines</au><au>Beckert, Audrey</au><au>Schupke, Kristin</au><au>Schmidbauer, Sven</au><au>Graf, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The integration of alternative contact cleaning techniques for future DRAM technology nodes</atitle><jtitle>Microelectronic engineering</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>85</volume><issue>10</issue><spage>2025</spage><epage>2027</epage><pages>2025-2027</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><coden>MIENEF</coden><abstract>Conventional DRAM contact to Si cleaning methods are using wet HF-based chemistry to remove the native SiO
2 from the contact bottom and reduce the contact resistance [M.R. Baklanov, et al., J. Electrochem. Soc. 145 (9) (1998) 3240–3246]. With further scaling of the contact dimensions the distance between the contacts to the bitline (CB) and the adjacent gate conductors (GC) is decreasing. This is leading to increased parasitic capacitance between the CB and the GC and increased total bitline capacitance. The high bitline capacitance results in large signal delays, poor transfer ratio and thus bad signal margin and worse retention. In addition it is a general limitation for the number of cells attached to this bitline. For future DRAMs the need for small chip size is driving the reduction of the bitline capacitance and keeping the distance between the CB and the GC becomes a critical challenge. Typically, the material separating the CB from the GC is LPCVD TEOS. Furthermore, the selectivity of the wet HF-based chemistry of the as-deposited LPCVD TEOS to thermal SiO
2 is in the order of 3:1. This is resulting in high removal amount of LPCVD TEOS for a given removal of native SiO
2.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2008.07.011</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9317 |
ispartof | Microelectronic engineering, 2008-10, Vol.85 (10), p.2025-2027 |
issn | 0167-9317 1873-5568 |
language | eng |
recordid | cdi_proquest_miscellaneous_35568953 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Capacitance Clean Contact Design. Technologies. Operation analysis. Testing Electronics Exact sciences and technology Integrated circuits Integrated circuits by function (including memories and processors) Microelectronic fabrication (materials and surfaces technology) Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices TEOS |
title | The integration of alternative contact cleaning techniques for future DRAM technology nodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20integration%20of%20alternative%20contact%20cleaning%20techniques%20for%20future%20DRAM%20technology%20nodes&rft.jtitle=Microelectronic%20engineering&rft.au=Stavrev,%20Momtchil&rft.date=2008-10-01&rft.volume=85&rft.issue=10&rft.spage=2025&rft.epage=2027&rft.pages=2025-2027&rft.issn=0167-9317&rft.eissn=1873-5568&rft.coden=MIENEF&rft_id=info:doi/10.1016/j.mee.2008.07.011&rft_dat=%3Cproquest_cross%3E35568953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35568953&rft_id=info:pmid/&rft_els_id=S0167931708003213&rfr_iscdi=true |