PLS: A versatile tool for industrial process improvement and optimization
Modern industrial processes are characterized by acquiring massive amounts of highly collinear data. In this context, partial least‐squares (PLS) regression, if wisely used, can become a strategic tool for process improvement and optimization. In this paper we illustrate the versatility of this tech...
Gespeichert in:
Veröffentlicht in: | Applied stochastic models in business and industry 2008-11, Vol.24 (6), p.551-567 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 567 |
---|---|
container_issue | 6 |
container_start_page | 551 |
container_title | Applied stochastic models in business and industry |
container_volume | 24 |
creator | Ferrer, Alberto Aguado, Daniel Vidal-Puig, Santiago Prats, José Manuel Zarzo, Manuel |
description | Modern industrial processes are characterized by acquiring massive amounts of highly collinear data. In this context, partial least‐squares (PLS) regression, if wisely used, can become a strategic tool for process improvement and optimization. In this paper we illustrate the versatility of this technique through several real case studies that basically differ in the structure of the X matrix (process variables) and Y matrix (response parameters). By using the PLS approach, the results show that it is possible to build predictive models (soft sensors) for monitoring the performance of a wastewater treatment plant, to help in the diagnosis of a complex batch polymerization process, to develop an automatic classifier based on image data, or to assist in the empirical model building of a continuous polymerization process. Copyright © 2008 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/asmb.716 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35544309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35544309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3346-b3cd82b8c48c5c698f62941de0bb8a126c0fa330f844909af6dba029996b086c3</originalsourceid><addsrcrecordid>eNp10EFLwzAUB_AgCs4p-BFyEi-dL02aNd7mpnOwTWWKx5CmKUTbZibddH56OyeCB0_vf_i9x-OP0CmBHgGIL1Sosl6f8D3UIUnMIwZxsv-dWUQEsEN0FMILACGsTzpocj9dXOIBXhsfVGNLgxvnSlw4j22dr0LjrSrx0jttQsC2atPaVKZusKpz7JaNrexnu-jqY3RQqDKYk5_ZRU8314_D22h6N54MB9NIU8p4lFGdp3GWapbqRHORFjwWjOQGsixVJOYaCkUpFCljAoQqeJ4piIUQPIOUa9pFZ7u77StvKxMaWdmgTVmq2rhVkDRJGKMgWni-g9q7ELwp5NLbSvmNJCC3XcltV7LtqqXRjr63DWz-dXKwmF398TY05uPXK_8qeZ_2E_k8H8uEzEcwojP5QL8Ay196Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35544309</pqid></control><display><type>article</type><title>PLS: A versatile tool for industrial process improvement and optimization</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Ferrer, Alberto ; Aguado, Daniel ; Vidal-Puig, Santiago ; Prats, José Manuel ; Zarzo, Manuel</creator><creatorcontrib>Ferrer, Alberto ; Aguado, Daniel ; Vidal-Puig, Santiago ; Prats, José Manuel ; Zarzo, Manuel</creatorcontrib><description>Modern industrial processes are characterized by acquiring massive amounts of highly collinear data. In this context, partial least‐squares (PLS) regression, if wisely used, can become a strategic tool for process improvement and optimization. In this paper we illustrate the versatility of this technique through several real case studies that basically differ in the structure of the X matrix (process variables) and Y matrix (response parameters). By using the PLS approach, the results show that it is possible to build predictive models (soft sensors) for monitoring the performance of a wastewater treatment plant, to help in the diagnosis of a complex batch polymerization process, to develop an automatic classifier based on image data, or to assist in the empirical model building of a continuous polymerization process. Copyright © 2008 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1524-1904</identifier><identifier>EISSN: 1526-4025</identifier><identifier>DOI: 10.1002/asmb.716</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>classification ; fault diagnosis ; monitoring ; multivariate image analysis ; PLS time series ; soft sensor</subject><ispartof>Applied stochastic models in business and industry, 2008-11, Vol.24 (6), p.551-567</ispartof><rights>Copyright © 2008 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3346-b3cd82b8c48c5c698f62941de0bb8a126c0fa330f844909af6dba029996b086c3</citedby><cites>FETCH-LOGICAL-c3346-b3cd82b8c48c5c698f62941de0bb8a126c0fa330f844909af6dba029996b086c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasmb.716$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasmb.716$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ferrer, Alberto</creatorcontrib><creatorcontrib>Aguado, Daniel</creatorcontrib><creatorcontrib>Vidal-Puig, Santiago</creatorcontrib><creatorcontrib>Prats, José Manuel</creatorcontrib><creatorcontrib>Zarzo, Manuel</creatorcontrib><title>PLS: A versatile tool for industrial process improvement and optimization</title><title>Applied stochastic models in business and industry</title><addtitle>Appl. Stochastic Models Bus. Ind</addtitle><description>Modern industrial processes are characterized by acquiring massive amounts of highly collinear data. In this context, partial least‐squares (PLS) regression, if wisely used, can become a strategic tool for process improvement and optimization. In this paper we illustrate the versatility of this technique through several real case studies that basically differ in the structure of the X matrix (process variables) and Y matrix (response parameters). By using the PLS approach, the results show that it is possible to build predictive models (soft sensors) for monitoring the performance of a wastewater treatment plant, to help in the diagnosis of a complex batch polymerization process, to develop an automatic classifier based on image data, or to assist in the empirical model building of a continuous polymerization process. Copyright © 2008 John Wiley & Sons, Ltd.</description><subject>classification</subject><subject>fault diagnosis</subject><subject>monitoring</subject><subject>multivariate image analysis</subject><subject>PLS time series</subject><subject>soft sensor</subject><issn>1524-1904</issn><issn>1526-4025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAUB_AgCs4p-BFyEi-dL02aNd7mpnOwTWWKx5CmKUTbZibddH56OyeCB0_vf_i9x-OP0CmBHgGIL1Sosl6f8D3UIUnMIwZxsv-dWUQEsEN0FMILACGsTzpocj9dXOIBXhsfVGNLgxvnSlw4j22dr0LjrSrx0jttQsC2atPaVKZusKpz7JaNrexnu-jqY3RQqDKYk5_ZRU8314_D22h6N54MB9NIU8p4lFGdp3GWapbqRHORFjwWjOQGsixVJOYaCkUpFCljAoQqeJ4piIUQPIOUa9pFZ7u77StvKxMaWdmgTVmq2rhVkDRJGKMgWni-g9q7ELwp5NLbSvmNJCC3XcltV7LtqqXRjr63DWz-dXKwmF398TY05uPXK_8qeZ_2E_k8H8uEzEcwojP5QL8Ay196Rg</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Ferrer, Alberto</creator><creator>Aguado, Daniel</creator><creator>Vidal-Puig, Santiago</creator><creator>Prats, José Manuel</creator><creator>Zarzo, Manuel</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200811</creationdate><title>PLS: A versatile tool for industrial process improvement and optimization</title><author>Ferrer, Alberto ; Aguado, Daniel ; Vidal-Puig, Santiago ; Prats, José Manuel ; Zarzo, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3346-b3cd82b8c48c5c698f62941de0bb8a126c0fa330f844909af6dba029996b086c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>classification</topic><topic>fault diagnosis</topic><topic>monitoring</topic><topic>multivariate image analysis</topic><topic>PLS time series</topic><topic>soft sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrer, Alberto</creatorcontrib><creatorcontrib>Aguado, Daniel</creatorcontrib><creatorcontrib>Vidal-Puig, Santiago</creatorcontrib><creatorcontrib>Prats, José Manuel</creatorcontrib><creatorcontrib>Zarzo, Manuel</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied stochastic models in business and industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrer, Alberto</au><au>Aguado, Daniel</au><au>Vidal-Puig, Santiago</au><au>Prats, José Manuel</au><au>Zarzo, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PLS: A versatile tool for industrial process improvement and optimization</atitle><jtitle>Applied stochastic models in business and industry</jtitle><addtitle>Appl. Stochastic Models Bus. Ind</addtitle><date>2008-11</date><risdate>2008</risdate><volume>24</volume><issue>6</issue><spage>551</spage><epage>567</epage><pages>551-567</pages><issn>1524-1904</issn><eissn>1526-4025</eissn><abstract>Modern industrial processes are characterized by acquiring massive amounts of highly collinear data. In this context, partial least‐squares (PLS) regression, if wisely used, can become a strategic tool for process improvement and optimization. In this paper we illustrate the versatility of this technique through several real case studies that basically differ in the structure of the X matrix (process variables) and Y matrix (response parameters). By using the PLS approach, the results show that it is possible to build predictive models (soft sensors) for monitoring the performance of a wastewater treatment plant, to help in the diagnosis of a complex batch polymerization process, to develop an automatic classifier based on image data, or to assist in the empirical model building of a continuous polymerization process. Copyright © 2008 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/asmb.716</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-1904 |
ispartof | Applied stochastic models in business and industry, 2008-11, Vol.24 (6), p.551-567 |
issn | 1524-1904 1526-4025 |
language | eng |
recordid | cdi_proquest_miscellaneous_35544309 |
source | EBSCOhost Business Source Complete; Access via Wiley Online Library |
subjects | classification fault diagnosis monitoring multivariate image analysis PLS time series soft sensor |
title | PLS: A versatile tool for industrial process improvement and optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A30%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PLS:%20A%20versatile%20tool%20for%20industrial%20process%20improvement%20and%20optimization&rft.jtitle=Applied%20stochastic%20models%20in%20business%20and%20industry&rft.au=Ferrer,%20Alberto&rft.date=2008-11&rft.volume=24&rft.issue=6&rft.spage=551&rft.epage=567&rft.pages=551-567&rft.issn=1524-1904&rft.eissn=1526-4025&rft_id=info:doi/10.1002/asmb.716&rft_dat=%3Cproquest_cross%3E35544309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35544309&rft_id=info:pmid/&rfr_iscdi=true |