PLS: A versatile tool for industrial process improvement and optimization

Modern industrial processes are characterized by acquiring massive amounts of highly collinear data. In this context, partial least‐squares (PLS) regression, if wisely used, can become a strategic tool for process improvement and optimization. In this paper we illustrate the versatility of this tech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied stochastic models in business and industry 2008-11, Vol.24 (6), p.551-567
Hauptverfasser: Ferrer, Alberto, Aguado, Daniel, Vidal-Puig, Santiago, Prats, José Manuel, Zarzo, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 567
container_issue 6
container_start_page 551
container_title Applied stochastic models in business and industry
container_volume 24
creator Ferrer, Alberto
Aguado, Daniel
Vidal-Puig, Santiago
Prats, José Manuel
Zarzo, Manuel
description Modern industrial processes are characterized by acquiring massive amounts of highly collinear data. In this context, partial least‐squares (PLS) regression, if wisely used, can become a strategic tool for process improvement and optimization. In this paper we illustrate the versatility of this technique through several real case studies that basically differ in the structure of the X matrix (process variables) and Y matrix (response parameters). By using the PLS approach, the results show that it is possible to build predictive models (soft sensors) for monitoring the performance of a wastewater treatment plant, to help in the diagnosis of a complex batch polymerization process, to develop an automatic classifier based on image data, or to assist in the empirical model building of a continuous polymerization process. Copyright © 2008 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/asmb.716
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35544309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35544309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3346-b3cd82b8c48c5c698f62941de0bb8a126c0fa330f844909af6dba029996b086c3</originalsourceid><addsrcrecordid>eNp10EFLwzAUB_AgCs4p-BFyEi-dL02aNd7mpnOwTWWKx5CmKUTbZibddH56OyeCB0_vf_i9x-OP0CmBHgGIL1Sosl6f8D3UIUnMIwZxsv-dWUQEsEN0FMILACGsTzpocj9dXOIBXhsfVGNLgxvnSlw4j22dr0LjrSrx0jttQsC2atPaVKZusKpz7JaNrexnu-jqY3RQqDKYk5_ZRU8314_D22h6N54MB9NIU8p4lFGdp3GWapbqRHORFjwWjOQGsixVJOYaCkUpFCljAoQqeJ4piIUQPIOUa9pFZ7u77StvKxMaWdmgTVmq2rhVkDRJGKMgWni-g9q7ELwp5NLbSvmNJCC3XcltV7LtqqXRjr63DWz-dXKwmF398TY05uPXK_8qeZ_2E_k8H8uEzEcwojP5QL8Ay196Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35544309</pqid></control><display><type>article</type><title>PLS: A versatile tool for industrial process improvement and optimization</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Ferrer, Alberto ; Aguado, Daniel ; Vidal-Puig, Santiago ; Prats, José Manuel ; Zarzo, Manuel</creator><creatorcontrib>Ferrer, Alberto ; Aguado, Daniel ; Vidal-Puig, Santiago ; Prats, José Manuel ; Zarzo, Manuel</creatorcontrib><description>Modern industrial processes are characterized by acquiring massive amounts of highly collinear data. In this context, partial least‐squares (PLS) regression, if wisely used, can become a strategic tool for process improvement and optimization. In this paper we illustrate the versatility of this technique through several real case studies that basically differ in the structure of the X matrix (process variables) and Y matrix (response parameters). By using the PLS approach, the results show that it is possible to build predictive models (soft sensors) for monitoring the performance of a wastewater treatment plant, to help in the diagnosis of a complex batch polymerization process, to develop an automatic classifier based on image data, or to assist in the empirical model building of a continuous polymerization process. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1524-1904</identifier><identifier>EISSN: 1526-4025</identifier><identifier>DOI: 10.1002/asmb.716</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>classification ; fault diagnosis ; monitoring ; multivariate image analysis ; PLS time series ; soft sensor</subject><ispartof>Applied stochastic models in business and industry, 2008-11, Vol.24 (6), p.551-567</ispartof><rights>Copyright © 2008 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3346-b3cd82b8c48c5c698f62941de0bb8a126c0fa330f844909af6dba029996b086c3</citedby><cites>FETCH-LOGICAL-c3346-b3cd82b8c48c5c698f62941de0bb8a126c0fa330f844909af6dba029996b086c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasmb.716$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasmb.716$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ferrer, Alberto</creatorcontrib><creatorcontrib>Aguado, Daniel</creatorcontrib><creatorcontrib>Vidal-Puig, Santiago</creatorcontrib><creatorcontrib>Prats, José Manuel</creatorcontrib><creatorcontrib>Zarzo, Manuel</creatorcontrib><title>PLS: A versatile tool for industrial process improvement and optimization</title><title>Applied stochastic models in business and industry</title><addtitle>Appl. Stochastic Models Bus. Ind</addtitle><description>Modern industrial processes are characterized by acquiring massive amounts of highly collinear data. In this context, partial least‐squares (PLS) regression, if wisely used, can become a strategic tool for process improvement and optimization. In this paper we illustrate the versatility of this technique through several real case studies that basically differ in the structure of the X matrix (process variables) and Y matrix (response parameters). By using the PLS approach, the results show that it is possible to build predictive models (soft sensors) for monitoring the performance of a wastewater treatment plant, to help in the diagnosis of a complex batch polymerization process, to develop an automatic classifier based on image data, or to assist in the empirical model building of a continuous polymerization process. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><subject>classification</subject><subject>fault diagnosis</subject><subject>monitoring</subject><subject>multivariate image analysis</subject><subject>PLS time series</subject><subject>soft sensor</subject><issn>1524-1904</issn><issn>1526-4025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAUB_AgCs4p-BFyEi-dL02aNd7mpnOwTWWKx5CmKUTbZibddH56OyeCB0_vf_i9x-OP0CmBHgGIL1Sosl6f8D3UIUnMIwZxsv-dWUQEsEN0FMILACGsTzpocj9dXOIBXhsfVGNLgxvnSlw4j22dr0LjrSrx0jttQsC2atPaVKZusKpz7JaNrexnu-jqY3RQqDKYk5_ZRU8314_D22h6N54MB9NIU8p4lFGdp3GWapbqRHORFjwWjOQGsixVJOYaCkUpFCljAoQqeJ4piIUQPIOUa9pFZ7u77StvKxMaWdmgTVmq2rhVkDRJGKMgWni-g9q7ELwp5NLbSvmNJCC3XcltV7LtqqXRjr63DWz-dXKwmF398TY05uPXK_8qeZ_2E_k8H8uEzEcwojP5QL8Ay196Rg</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Ferrer, Alberto</creator><creator>Aguado, Daniel</creator><creator>Vidal-Puig, Santiago</creator><creator>Prats, José Manuel</creator><creator>Zarzo, Manuel</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200811</creationdate><title>PLS: A versatile tool for industrial process improvement and optimization</title><author>Ferrer, Alberto ; Aguado, Daniel ; Vidal-Puig, Santiago ; Prats, José Manuel ; Zarzo, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3346-b3cd82b8c48c5c698f62941de0bb8a126c0fa330f844909af6dba029996b086c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>classification</topic><topic>fault diagnosis</topic><topic>monitoring</topic><topic>multivariate image analysis</topic><topic>PLS time series</topic><topic>soft sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrer, Alberto</creatorcontrib><creatorcontrib>Aguado, Daniel</creatorcontrib><creatorcontrib>Vidal-Puig, Santiago</creatorcontrib><creatorcontrib>Prats, José Manuel</creatorcontrib><creatorcontrib>Zarzo, Manuel</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied stochastic models in business and industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrer, Alberto</au><au>Aguado, Daniel</au><au>Vidal-Puig, Santiago</au><au>Prats, José Manuel</au><au>Zarzo, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PLS: A versatile tool for industrial process improvement and optimization</atitle><jtitle>Applied stochastic models in business and industry</jtitle><addtitle>Appl. Stochastic Models Bus. Ind</addtitle><date>2008-11</date><risdate>2008</risdate><volume>24</volume><issue>6</issue><spage>551</spage><epage>567</epage><pages>551-567</pages><issn>1524-1904</issn><eissn>1526-4025</eissn><abstract>Modern industrial processes are characterized by acquiring massive amounts of highly collinear data. In this context, partial least‐squares (PLS) regression, if wisely used, can become a strategic tool for process improvement and optimization. In this paper we illustrate the versatility of this technique through several real case studies that basically differ in the structure of the X matrix (process variables) and Y matrix (response parameters). By using the PLS approach, the results show that it is possible to build predictive models (soft sensors) for monitoring the performance of a wastewater treatment plant, to help in the diagnosis of a complex batch polymerization process, to develop an automatic classifier based on image data, or to assist in the empirical model building of a continuous polymerization process. Copyright © 2008 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/asmb.716</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1524-1904
ispartof Applied stochastic models in business and industry, 2008-11, Vol.24 (6), p.551-567
issn 1524-1904
1526-4025
language eng
recordid cdi_proquest_miscellaneous_35544309
source EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects classification
fault diagnosis
monitoring
multivariate image analysis
PLS time series
soft sensor
title PLS: A versatile tool for industrial process improvement and optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A30%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PLS:%20A%20versatile%20tool%20for%20industrial%20process%20improvement%20and%20optimization&rft.jtitle=Applied%20stochastic%20models%20in%20business%20and%20industry&rft.au=Ferrer,%20Alberto&rft.date=2008-11&rft.volume=24&rft.issue=6&rft.spage=551&rft.epage=567&rft.pages=551-567&rft.issn=1524-1904&rft.eissn=1526-4025&rft_id=info:doi/10.1002/asmb.716&rft_dat=%3Cproquest_cross%3E35544309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35544309&rft_id=info:pmid/&rfr_iscdi=true