Inductive transfer with context-sensitive neural networks
Context-sensitive Multiple Task Learning, or cs MTL, is presented as a method of inductive transfer which uses a single output neural network and additional contextual inputs for learning multiple tasks. Motivated by problems with the application of MTL networks to machine lifelong learning systems,...
Gespeichert in:
Veröffentlicht in: | Machine learning 2008-12, Vol.73 (3), p.313-336 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 3 |
container_start_page | 313 |
container_title | Machine learning |
container_volume | 73 |
creator | Silver, Daniel L. Poirier, Ryan Currie, Duane |
description | Context-sensitive
Multiple Task Learning, or
cs
MTL, is presented as a method of inductive transfer which uses a single output neural network and additional contextual inputs for learning multiple tasks. Motivated by problems with the application of MTL networks to machine lifelong learning systems,
cs
MTL encoding of multiple task examples was developed and found to improve predictive performance. As evidence, the
cs
MTL method is tested on seven task domains and shown to produce hypotheses for primary tasks that are often better than standard MTL hypotheses when learning in the presence of related and unrelated tasks. We argue that the reason for this performance improvement is a reduction in the number of effective free parameters in the
cs
MTL network brought about by the shared output node and weight update constraints due to the context inputs. An examination of IDT and SVM models developed from
cs
MTL encoded data provides initial evidence that this improvement is not shared across all machine learning models. |
doi_str_mv | 10.1007/s10994-008-5088-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35443201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1896358261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-2b1fc2c8081191de44286ace24e29a5dca8583dff885e16845920782130b8bde3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG-LB2_RmTRp06Ms_lkQvOg5dNOpdu2ma5K6-u3NWkEQPA3M_N7jzWPsFOECAYrLgFCWkgNorkBrDntsgqrIOKhc7bNJ2imeo1CH7CiEFQCIXOcTVi5cPdjYvtMs-sqFhvxs28aXme1dpI_IA7nQft8dDb7q0ojb3r-GY3bQVF2gk585ZU8314_zO37_cLuYX91zK4WIXCyxscJq0Igl1iSl0HllSUgSZaVqW2mls7ppUkDCXEtVCii0wAyWellTNmXno-_G928DhWjWbbDUdZWjfggmU1JmAjCBZ3_AVT94l7IZkb4ttESVIBwh6_sQPDVm49t15T8Ngtk1acYmTWrS7Jo0kDRi1ITEumfyv8b_i74AFCF1jQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>202678415</pqid></control><display><type>article</type><title>Inductive transfer with context-sensitive neural networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Silver, Daniel L. ; Poirier, Ryan ; Currie, Duane</creator><creatorcontrib>Silver, Daniel L. ; Poirier, Ryan ; Currie, Duane</creatorcontrib><description>Context-sensitive
Multiple Task Learning, or
cs
MTL, is presented as a method of inductive transfer which uses a single output neural network and additional contextual inputs for learning multiple tasks. Motivated by problems with the application of MTL networks to machine lifelong learning systems,
cs
MTL encoding of multiple task examples was developed and found to improve predictive performance. As evidence, the
cs
MTL method is tested on seven task domains and shown to produce hypotheses for primary tasks that are often better than standard MTL hypotheses when learning in the presence of related and unrelated tasks. We argue that the reason for this performance improvement is a reduction in the number of effective free parameters in the
cs
MTL network brought about by the shared output node and weight update constraints due to the context inputs. An examination of IDT and SVM models developed from
cs
MTL encoded data provides initial evidence that this improvement is not shared across all machine learning models.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-008-5088-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Control ; Mechatronics ; Natural Language Processing (NLP) ; Neural networks ; Robotics ; Simulation and Modeling</subject><ispartof>Machine learning, 2008-12, Vol.73 (3), p.313-336</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-2b1fc2c8081191de44286ace24e29a5dca8583dff885e16845920782130b8bde3</citedby><cites>FETCH-LOGICAL-c422t-2b1fc2c8081191de44286ace24e29a5dca8583dff885e16845920782130b8bde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-008-5088-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-008-5088-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Silver, Daniel L.</creatorcontrib><creatorcontrib>Poirier, Ryan</creatorcontrib><creatorcontrib>Currie, Duane</creatorcontrib><title>Inductive transfer with context-sensitive neural networks</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>Context-sensitive
Multiple Task Learning, or
cs
MTL, is presented as a method of inductive transfer which uses a single output neural network and additional contextual inputs for learning multiple tasks. Motivated by problems with the application of MTL networks to machine lifelong learning systems,
cs
MTL encoding of multiple task examples was developed and found to improve predictive performance. As evidence, the
cs
MTL method is tested on seven task domains and shown to produce hypotheses for primary tasks that are often better than standard MTL hypotheses when learning in the presence of related and unrelated tasks. We argue that the reason for this performance improvement is a reduction in the number of effective free parameters in the
cs
MTL network brought about by the shared output node and weight update constraints due to the context inputs. An examination of IDT and SVM models developed from
cs
MTL encoded data provides initial evidence that this improvement is not shared across all machine learning models.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Control</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Neural networks</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG-LB2_RmTRp06Ms_lkQvOg5dNOpdu2ma5K6-u3NWkEQPA3M_N7jzWPsFOECAYrLgFCWkgNorkBrDntsgqrIOKhc7bNJ2imeo1CH7CiEFQCIXOcTVi5cPdjYvtMs-sqFhvxs28aXme1dpI_IA7nQft8dDb7q0ojb3r-GY3bQVF2gk585ZU8314_zO37_cLuYX91zK4WIXCyxscJq0Igl1iSl0HllSUgSZaVqW2mls7ppUkDCXEtVCii0wAyWellTNmXno-_G928DhWjWbbDUdZWjfggmU1JmAjCBZ3_AVT94l7IZkb4ttESVIBwh6_sQPDVm49t15T8Ngtk1acYmTWrS7Jo0kDRi1ITEumfyv8b_i74AFCF1jQ</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Silver, Daniel L.</creator><creator>Poirier, Ryan</creator><creator>Currie, Duane</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20081201</creationdate><title>Inductive transfer with context-sensitive neural networks</title><author>Silver, Daniel L. ; Poirier, Ryan ; Currie, Duane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-2b1fc2c8081191de44286ace24e29a5dca8583dff885e16845920782130b8bde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Control</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Neural networks</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silver, Daniel L.</creatorcontrib><creatorcontrib>Poirier, Ryan</creatorcontrib><creatorcontrib>Currie, Duane</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silver, Daniel L.</au><au>Poirier, Ryan</au><au>Currie, Duane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inductive transfer with context-sensitive neural networks</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>73</volume><issue>3</issue><spage>313</spage><epage>336</epage><pages>313-336</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>Context-sensitive
Multiple Task Learning, or
cs
MTL, is presented as a method of inductive transfer which uses a single output neural network and additional contextual inputs for learning multiple tasks. Motivated by problems with the application of MTL networks to machine lifelong learning systems,
cs
MTL encoding of multiple task examples was developed and found to improve predictive performance. As evidence, the
cs
MTL method is tested on seven task domains and shown to produce hypotheses for primary tasks that are often better than standard MTL hypotheses when learning in the presence of related and unrelated tasks. We argue that the reason for this performance improvement is a reduction in the number of effective free parameters in the
cs
MTL network brought about by the shared output node and weight update constraints due to the context inputs. An examination of IDT and SVM models developed from
cs
MTL encoded data provides initial evidence that this improvement is not shared across all machine learning models.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10994-008-5088-0</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6125 |
ispartof | Machine learning, 2008-12, Vol.73 (3), p.313-336 |
issn | 0885-6125 1573-0565 |
language | eng |
recordid | cdi_proquest_miscellaneous_35443201 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Computer Science Control Mechatronics Natural Language Processing (NLP) Neural networks Robotics Simulation and Modeling |
title | Inductive transfer with context-sensitive neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inductive%20transfer%20with%20context-sensitive%20neural%20networks&rft.jtitle=Machine%20learning&rft.au=Silver,%20Daniel%20L.&rft.date=2008-12-01&rft.volume=73&rft.issue=3&rft.spage=313&rft.epage=336&rft.pages=313-336&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-008-5088-0&rft_dat=%3Cproquest_cross%3E1896358261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=202678415&rft_id=info:pmid/&rfr_iscdi=true |