Inductive transfer with context-sensitive neural networks

Context-sensitive Multiple Task Learning, or cs MTL, is presented as a method of inductive transfer which uses a single output neural network and additional contextual inputs for learning multiple tasks. Motivated by problems with the application of MTL networks to machine lifelong learning systems,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2008-12, Vol.73 (3), p.313-336
Hauptverfasser: Silver, Daniel L., Poirier, Ryan, Currie, Duane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue 3
container_start_page 313
container_title Machine learning
container_volume 73
creator Silver, Daniel L.
Poirier, Ryan
Currie, Duane
description Context-sensitive Multiple Task Learning, or cs MTL, is presented as a method of inductive transfer which uses a single output neural network and additional contextual inputs for learning multiple tasks. Motivated by problems with the application of MTL networks to machine lifelong learning systems, cs MTL encoding of multiple task examples was developed and found to improve predictive performance. As evidence, the cs MTL method is tested on seven task domains and shown to produce hypotheses for primary tasks that are often better than standard MTL hypotheses when learning in the presence of related and unrelated tasks. We argue that the reason for this performance improvement is a reduction in the number of effective free parameters in the cs MTL network brought about by the shared output node and weight update constraints due to the context inputs. An examination of IDT and SVM models developed from cs MTL encoded data provides initial evidence that this improvement is not shared across all machine learning models.
doi_str_mv 10.1007/s10994-008-5088-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35443201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1896358261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-2b1fc2c8081191de44286ace24e29a5dca8583dff885e16845920782130b8bde3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG-LB2_RmTRp06Ms_lkQvOg5dNOpdu2ma5K6-u3NWkEQPA3M_N7jzWPsFOECAYrLgFCWkgNorkBrDntsgqrIOKhc7bNJ2imeo1CH7CiEFQCIXOcTVi5cPdjYvtMs-sqFhvxs28aXme1dpI_IA7nQft8dDb7q0ojb3r-GY3bQVF2gk585ZU8314_zO37_cLuYX91zK4WIXCyxscJq0Igl1iSl0HllSUgSZaVqW2mls7ppUkDCXEtVCii0wAyWellTNmXno-_G928DhWjWbbDUdZWjfggmU1JmAjCBZ3_AVT94l7IZkb4ttESVIBwh6_sQPDVm49t15T8Ngtk1acYmTWrS7Jo0kDRi1ITEumfyv8b_i74AFCF1jQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>202678415</pqid></control><display><type>article</type><title>Inductive transfer with context-sensitive neural networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Silver, Daniel L. ; Poirier, Ryan ; Currie, Duane</creator><creatorcontrib>Silver, Daniel L. ; Poirier, Ryan ; Currie, Duane</creatorcontrib><description>Context-sensitive Multiple Task Learning, or cs MTL, is presented as a method of inductive transfer which uses a single output neural network and additional contextual inputs for learning multiple tasks. Motivated by problems with the application of MTL networks to machine lifelong learning systems, cs MTL encoding of multiple task examples was developed and found to improve predictive performance. As evidence, the cs MTL method is tested on seven task domains and shown to produce hypotheses for primary tasks that are often better than standard MTL hypotheses when learning in the presence of related and unrelated tasks. We argue that the reason for this performance improvement is a reduction in the number of effective free parameters in the cs MTL network brought about by the shared output node and weight update constraints due to the context inputs. An examination of IDT and SVM models developed from cs MTL encoded data provides initial evidence that this improvement is not shared across all machine learning models.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-008-5088-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Control ; Mechatronics ; Natural Language Processing (NLP) ; Neural networks ; Robotics ; Simulation and Modeling</subject><ispartof>Machine learning, 2008-12, Vol.73 (3), p.313-336</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-2b1fc2c8081191de44286ace24e29a5dca8583dff885e16845920782130b8bde3</citedby><cites>FETCH-LOGICAL-c422t-2b1fc2c8081191de44286ace24e29a5dca8583dff885e16845920782130b8bde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-008-5088-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-008-5088-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Silver, Daniel L.</creatorcontrib><creatorcontrib>Poirier, Ryan</creatorcontrib><creatorcontrib>Currie, Duane</creatorcontrib><title>Inductive transfer with context-sensitive neural networks</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>Context-sensitive Multiple Task Learning, or cs MTL, is presented as a method of inductive transfer which uses a single output neural network and additional contextual inputs for learning multiple tasks. Motivated by problems with the application of MTL networks to machine lifelong learning systems, cs MTL encoding of multiple task examples was developed and found to improve predictive performance. As evidence, the cs MTL method is tested on seven task domains and shown to produce hypotheses for primary tasks that are often better than standard MTL hypotheses when learning in the presence of related and unrelated tasks. We argue that the reason for this performance improvement is a reduction in the number of effective free parameters in the cs MTL network brought about by the shared output node and weight update constraints due to the context inputs. An examination of IDT and SVM models developed from cs MTL encoded data provides initial evidence that this improvement is not shared across all machine learning models.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Control</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Neural networks</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG-LB2_RmTRp06Ms_lkQvOg5dNOpdu2ma5K6-u3NWkEQPA3M_N7jzWPsFOECAYrLgFCWkgNorkBrDntsgqrIOKhc7bNJ2imeo1CH7CiEFQCIXOcTVi5cPdjYvtMs-sqFhvxs28aXme1dpI_IA7nQft8dDb7q0ojb3r-GY3bQVF2gk585ZU8314_zO37_cLuYX91zK4WIXCyxscJq0Igl1iSl0HllSUgSZaVqW2mls7ppUkDCXEtVCii0wAyWellTNmXno-_G928DhWjWbbDUdZWjfggmU1JmAjCBZ3_AVT94l7IZkb4ttESVIBwh6_sQPDVm49t15T8Ngtk1acYmTWrS7Jo0kDRi1ITEumfyv8b_i74AFCF1jQ</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Silver, Daniel L.</creator><creator>Poirier, Ryan</creator><creator>Currie, Duane</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20081201</creationdate><title>Inductive transfer with context-sensitive neural networks</title><author>Silver, Daniel L. ; Poirier, Ryan ; Currie, Duane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-2b1fc2c8081191de44286ace24e29a5dca8583dff885e16845920782130b8bde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Control</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Neural networks</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silver, Daniel L.</creatorcontrib><creatorcontrib>Poirier, Ryan</creatorcontrib><creatorcontrib>Currie, Duane</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silver, Daniel L.</au><au>Poirier, Ryan</au><au>Currie, Duane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inductive transfer with context-sensitive neural networks</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>73</volume><issue>3</issue><spage>313</spage><epage>336</epage><pages>313-336</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>Context-sensitive Multiple Task Learning, or cs MTL, is presented as a method of inductive transfer which uses a single output neural network and additional contextual inputs for learning multiple tasks. Motivated by problems with the application of MTL networks to machine lifelong learning systems, cs MTL encoding of multiple task examples was developed and found to improve predictive performance. As evidence, the cs MTL method is tested on seven task domains and shown to produce hypotheses for primary tasks that are often better than standard MTL hypotheses when learning in the presence of related and unrelated tasks. We argue that the reason for this performance improvement is a reduction in the number of effective free parameters in the cs MTL network brought about by the shared output node and weight update constraints due to the context inputs. An examination of IDT and SVM models developed from cs MTL encoded data provides initial evidence that this improvement is not shared across all machine learning models.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10994-008-5088-0</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 2008-12, Vol.73 (3), p.313-336
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_miscellaneous_35443201
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computer Science
Control
Mechatronics
Natural Language Processing (NLP)
Neural networks
Robotics
Simulation and Modeling
title Inductive transfer with context-sensitive neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inductive%20transfer%20with%20context-sensitive%20neural%20networks&rft.jtitle=Machine%20learning&rft.au=Silver,%20Daniel%20L.&rft.date=2008-12-01&rft.volume=73&rft.issue=3&rft.spage=313&rft.epage=336&rft.pages=313-336&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-008-5088-0&rft_dat=%3Cproquest_cross%3E1896358261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=202678415&rft_id=info:pmid/&rfr_iscdi=true