Mathematical simulation for non-equilibrium droplet evaporation

Investigations of acute problems of phase transitions in continua mechanics need adequate modeling of evaporation, which is extremely important for the curved surfaces in the presence of strong heat and mass diffusion fluxes. Working cycle of heat pipes is governed by the active fluid evaporation ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2008-12, Vol.63 (11), p.1360-1371
Hauptverfasser: Dushin, V.R., Kulchitskiy, A.V., Nerchenko, V.A., Nikitin, V.F., Osadchaya, E.S., Phylippov, Yu.G., Smirnov, N.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1371
container_issue 11
container_start_page 1360
container_title Acta astronautica
container_volume 63
creator Dushin, V.R.
Kulchitskiy, A.V.
Nerchenko, V.A.
Nikitin, V.F.
Osadchaya, E.S.
Phylippov, Yu.G.
Smirnov, N.N.
description Investigations of acute problems of phase transitions in continua mechanics need adequate modeling of evaporation, which is extremely important for the curved surfaces in the presence of strong heat and mass diffusion fluxes. Working cycle of heat pipes is governed by the active fluid evaporation rate. Combustion of most widely spread hydrocarbon fuels takes place in a gas-phase regime. Thus, evaporation of fuel from the surface of droplets turns to be one of the limiting factors of the process as well. In the present paper processes of non-equilibrium evaporation of small droplets in a quiescent air and in streaming gas flows were investigated theoretically. The rate of droplet evaporation is characterized by a dimensionless Peclet number ( Pe). A new dimensionless parameter I characterizing the deviation of phase transition from the equilibrium was introduced, which made it possible to investigate its influence on variations of the Peclet number and to determine the range of applicability for the quasi-equilibrium model. As it follows from the present investigations accounting for non-equilibrium effects in evaporation for many types of widely used liquids is crucial for droplets diameters less than 100 μ m , while the surface tension effects essentially manifest only for droplets below 0.1 μ m . The effects of velocity non-equilibrium and droplet atomization were taken into account.
doi_str_mv 10.1016/j.actaastro.2008.05.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35442577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576508001860</els_id><sourcerecordid>35442577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-3c66b06b01adcf63a3d5a4433c7a946edcb28a79f9e5125f9b09512ae3c34933</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-Bnvy1jppkqY5ybL4BSte9h7SdIpZ2qabtAv-e7uueF0YmDk87wvzEHJPIaNAi8ddZuxoTByDz3KAMgORQU4vyIKWUqU5MLgkCwDFUyELcU1uYtwBgMxLtSBPH2b8ws6Mzpo2ia6b2vn2fdL4kPS-T3E_udZVwU1dUgc_tDgmeDCDD7_cLblqTBvx7m8vyfblebt-Szefr-_r1Sa1TMoxZbYoKpiHmto2BTOsFoZzxqw0ihdY2yovjVSNQkFz0agK1HwYZJZxxdiSPJxqh-D3E8ZRdy5abFvTo5-iZoLzXEh5FqSKUc5KPoPyBNrgYwzY6CG4zoRvTUEfxeqd_herj2I1CD2LnZOrUxLnfw8Og47WYW-xdgHtqGvvznb8AOjIhuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19314384</pqid></control><display><type>article</type><title>Mathematical simulation for non-equilibrium droplet evaporation</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Dushin, V.R. ; Kulchitskiy, A.V. ; Nerchenko, V.A. ; Nikitin, V.F. ; Osadchaya, E.S. ; Phylippov, Yu.G. ; Smirnov, N.N.</creator><creatorcontrib>Dushin, V.R. ; Kulchitskiy, A.V. ; Nerchenko, V.A. ; Nikitin, V.F. ; Osadchaya, E.S. ; Phylippov, Yu.G. ; Smirnov, N.N.</creatorcontrib><description>Investigations of acute problems of phase transitions in continua mechanics need adequate modeling of evaporation, which is extremely important for the curved surfaces in the presence of strong heat and mass diffusion fluxes. Working cycle of heat pipes is governed by the active fluid evaporation rate. Combustion of most widely spread hydrocarbon fuels takes place in a gas-phase regime. Thus, evaporation of fuel from the surface of droplets turns to be one of the limiting factors of the process as well. In the present paper processes of non-equilibrium evaporation of small droplets in a quiescent air and in streaming gas flows were investigated theoretically. The rate of droplet evaporation is characterized by a dimensionless Peclet number ( Pe). A new dimensionless parameter I characterizing the deviation of phase transition from the equilibrium was introduced, which made it possible to investigate its influence on variations of the Peclet number and to determine the range of applicability for the quasi-equilibrium model. As it follows from the present investigations accounting for non-equilibrium effects in evaporation for many types of widely used liquids is crucial for droplets diameters less than 100 μ m , while the surface tension effects essentially manifest only for droplets below 0.1 μ m . The effects of velocity non-equilibrium and droplet atomization were taken into account.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2008.05.021</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Evaporation ; Heat flux ; Non-equilibrium ; Phase transition</subject><ispartof>Acta astronautica, 2008-12, Vol.63 (11), p.1360-1371</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-3c66b06b01adcf63a3d5a4433c7a946edcb28a79f9e5125f9b09512ae3c34933</citedby><cites>FETCH-LOGICAL-c377t-3c66b06b01adcf63a3d5a4433c7a946edcb28a79f9e5125f9b09512ae3c34933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2008.05.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Dushin, V.R.</creatorcontrib><creatorcontrib>Kulchitskiy, A.V.</creatorcontrib><creatorcontrib>Nerchenko, V.A.</creatorcontrib><creatorcontrib>Nikitin, V.F.</creatorcontrib><creatorcontrib>Osadchaya, E.S.</creatorcontrib><creatorcontrib>Phylippov, Yu.G.</creatorcontrib><creatorcontrib>Smirnov, N.N.</creatorcontrib><title>Mathematical simulation for non-equilibrium droplet evaporation</title><title>Acta astronautica</title><description>Investigations of acute problems of phase transitions in continua mechanics need adequate modeling of evaporation, which is extremely important for the curved surfaces in the presence of strong heat and mass diffusion fluxes. Working cycle of heat pipes is governed by the active fluid evaporation rate. Combustion of most widely spread hydrocarbon fuels takes place in a gas-phase regime. Thus, evaporation of fuel from the surface of droplets turns to be one of the limiting factors of the process as well. In the present paper processes of non-equilibrium evaporation of small droplets in a quiescent air and in streaming gas flows were investigated theoretically. The rate of droplet evaporation is characterized by a dimensionless Peclet number ( Pe). A new dimensionless parameter I characterizing the deviation of phase transition from the equilibrium was introduced, which made it possible to investigate its influence on variations of the Peclet number and to determine the range of applicability for the quasi-equilibrium model. As it follows from the present investigations accounting for non-equilibrium effects in evaporation for many types of widely used liquids is crucial for droplets diameters less than 100 μ m , while the surface tension effects essentially manifest only for droplets below 0.1 μ m . The effects of velocity non-equilibrium and droplet atomization were taken into account.</description><subject>Evaporation</subject><subject>Heat flux</subject><subject>Non-equilibrium</subject><subject>Phase transition</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-Bnvy1jppkqY5ybL4BSte9h7SdIpZ2qabtAv-e7uueF0YmDk87wvzEHJPIaNAi8ddZuxoTByDz3KAMgORQU4vyIKWUqU5MLgkCwDFUyELcU1uYtwBgMxLtSBPH2b8ws6Mzpo2ia6b2vn2fdL4kPS-T3E_udZVwU1dUgc_tDgmeDCDD7_cLblqTBvx7m8vyfblebt-Szefr-_r1Sa1TMoxZbYoKpiHmto2BTOsFoZzxqw0ihdY2yovjVSNQkFz0agK1HwYZJZxxdiSPJxqh-D3E8ZRdy5abFvTo5-iZoLzXEh5FqSKUc5KPoPyBNrgYwzY6CG4zoRvTUEfxeqd_herj2I1CD2LnZOrUxLnfw8Og47WYW-xdgHtqGvvznb8AOjIhuQ</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Dushin, V.R.</creator><creator>Kulchitskiy, A.V.</creator><creator>Nerchenko, V.A.</creator><creator>Nikitin, V.F.</creator><creator>Osadchaya, E.S.</creator><creator>Phylippov, Yu.G.</creator><creator>Smirnov, N.N.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20081201</creationdate><title>Mathematical simulation for non-equilibrium droplet evaporation</title><author>Dushin, V.R. ; Kulchitskiy, A.V. ; Nerchenko, V.A. ; Nikitin, V.F. ; Osadchaya, E.S. ; Phylippov, Yu.G. ; Smirnov, N.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-3c66b06b01adcf63a3d5a4433c7a946edcb28a79f9e5125f9b09512ae3c34933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Evaporation</topic><topic>Heat flux</topic><topic>Non-equilibrium</topic><topic>Phase transition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dushin, V.R.</creatorcontrib><creatorcontrib>Kulchitskiy, A.V.</creatorcontrib><creatorcontrib>Nerchenko, V.A.</creatorcontrib><creatorcontrib>Nikitin, V.F.</creatorcontrib><creatorcontrib>Osadchaya, E.S.</creatorcontrib><creatorcontrib>Phylippov, Yu.G.</creatorcontrib><creatorcontrib>Smirnov, N.N.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dushin, V.R.</au><au>Kulchitskiy, A.V.</au><au>Nerchenko, V.A.</au><au>Nikitin, V.F.</au><au>Osadchaya, E.S.</au><au>Phylippov, Yu.G.</au><au>Smirnov, N.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical simulation for non-equilibrium droplet evaporation</atitle><jtitle>Acta astronautica</jtitle><date>2008-12-01</date><risdate>2008</risdate><volume>63</volume><issue>11</issue><spage>1360</spage><epage>1371</epage><pages>1360-1371</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>Investigations of acute problems of phase transitions in continua mechanics need adequate modeling of evaporation, which is extremely important for the curved surfaces in the presence of strong heat and mass diffusion fluxes. Working cycle of heat pipes is governed by the active fluid evaporation rate. Combustion of most widely spread hydrocarbon fuels takes place in a gas-phase regime. Thus, evaporation of fuel from the surface of droplets turns to be one of the limiting factors of the process as well. In the present paper processes of non-equilibrium evaporation of small droplets in a quiescent air and in streaming gas flows were investigated theoretically. The rate of droplet evaporation is characterized by a dimensionless Peclet number ( Pe). A new dimensionless parameter I characterizing the deviation of phase transition from the equilibrium was introduced, which made it possible to investigate its influence on variations of the Peclet number and to determine the range of applicability for the quasi-equilibrium model. As it follows from the present investigations accounting for non-equilibrium effects in evaporation for many types of widely used liquids is crucial for droplets diameters less than 100 μ m , while the surface tension effects essentially manifest only for droplets below 0.1 μ m . The effects of velocity non-equilibrium and droplet atomization were taken into account.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2008.05.021</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2008-12, Vol.63 (11), p.1360-1371
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_miscellaneous_35442577
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Evaporation
Heat flux
Non-equilibrium
Phase transition
title Mathematical simulation for non-equilibrium droplet evaporation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20simulation%20for%20non-equilibrium%20droplet%20evaporation&rft.jtitle=Acta%20astronautica&rft.au=Dushin,%20V.R.&rft.date=2008-12-01&rft.volume=63&rft.issue=11&rft.spage=1360&rft.epage=1371&rft.pages=1360-1371&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2008.05.021&rft_dat=%3Cproquest_cross%3E35442577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19314384&rft_id=info:pmid/&rft_els_id=S0094576508001860&rfr_iscdi=true