Electrochemical deposition of zinc–nickel alloy coatings in a polyligand alkaline bath

The polyligand alkaline bath for Zn–Ni alloy electrochemical deposition containing an aminoacetic acid (AAA) and triethanolamine (TEA) as the ligands to bind Ni(II) cations was developed. The alloy composition was greatly influenced by the [Zn(II)]/[Ni(II)] ratios in the bath, with the nickel conten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2008-11, Vol.203 (3), p.234-239
Hauptverfasser: Tsybulskaya, L.S., Gaevskaya, T.V., Purovskaya, O.G., Byk, T.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 3
container_start_page 234
container_title Surface & coatings technology
container_volume 203
creator Tsybulskaya, L.S.
Gaevskaya, T.V.
Purovskaya, O.G.
Byk, T.V.
description The polyligand alkaline bath for Zn–Ni alloy electrochemical deposition containing an aminoacetic acid (AAA) and triethanolamine (TEA) as the ligands to bind Ni(II) cations was developed. The alloy composition was greatly influenced by the [Zn(II)]/[Ni(II)] ratios in the bath, with the nickel content in the resultant deposit being varied in a wide range (from 8 to 75 at.%). X-ray diffraction studies revealed that the alloys consisted of the γ-phase (Ni 5Zn 21), solid solutions of Zn or Ni in the γ-phase, or of a mixture of the γ-phase and polycrystalline Ni or Zn. The high-quality coatings with the nickel content of 13–20 at.% having the γ-phase or solid solution of Zn in the γ-phase exhibited the highest corrosion resistance in a saline environment. To obtain corrosion-resistant alloys, the optimal Ni(II):АAA:ТEА molar ratio was found to be equal to 0.04:0.65:0.12. The microhardness of these Zn–Ni alloy coatings (1.6–1.9 GPa) was twice as great as the microhardness of zinc coating.
doi_str_mv 10.1016/j.surfcoat.2008.08.067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35439138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897208008256</els_id><sourcerecordid>35439138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-1fffe89be74d515147653f384dfdcedb6a84aa6c0619978998fc399fc1a773453</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKuvINnobmoymZkkO6XUHyi4UXAX0kzSpk2TmkyFuvIdfEOfxAxVt8KFu7jn3MP5ADjHaIQRbq6Wo7SNRgXZjUqE2Kifhh6AAWaUF4RU9BAMUFnTgnFaHoOTlJYIIUx5NQAvE6dVF4Na6LVV0sFWb0KynQ0eBgPfrVdfH5_eqpV2UDoXdrBPsn6eoPVQwk1wO2fn0rf5vJLOeg1nslucgiMjXdJnP3sInm8nT-P7Yvp49zC-mRaqIrwrsDFGMz7TtGprXOOKNjUxhFWtaZVuZ41klZSNQg3mnDLOmVGEc6OwpJRUNRmCy_3fTQyvW506sbZJaeek12GbBKlzDiYsC5u9UMWQUtRGbKJdy7gTGIkepFiKX5CiByn6aWg2XvwkyJQJmSi9sunPXSLGeMlR1l3vdTrXfbM6iqSs9rmFjZmxaIP9L-obbluPdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35439138</pqid></control><display><type>article</type><title>Electrochemical deposition of zinc–nickel alloy coatings in a polyligand alkaline bath</title><source>Elsevier ScienceDirect Journals</source><creator>Tsybulskaya, L.S. ; Gaevskaya, T.V. ; Purovskaya, O.G. ; Byk, T.V.</creator><creatorcontrib>Tsybulskaya, L.S. ; Gaevskaya, T.V. ; Purovskaya, O.G. ; Byk, T.V.</creatorcontrib><description>The polyligand alkaline bath for Zn–Ni alloy electrochemical deposition containing an aminoacetic acid (AAA) and triethanolamine (TEA) as the ligands to bind Ni(II) cations was developed. The alloy composition was greatly influenced by the [Zn(II)]/[Ni(II)] ratios in the bath, with the nickel content in the resultant deposit being varied in a wide range (from 8 to 75 at.%). X-ray diffraction studies revealed that the alloys consisted of the γ-phase (Ni 5Zn 21), solid solutions of Zn or Ni in the γ-phase, or of a mixture of the γ-phase and polycrystalline Ni or Zn. The high-quality coatings with the nickel content of 13–20 at.% having the γ-phase or solid solution of Zn in the γ-phase exhibited the highest corrosion resistance in a saline environment. To obtain corrosion-resistant alloys, the optimal Ni(II):АAA:ТEА molar ratio was found to be equal to 0.04:0.65:0.12. The microhardness of these Zn–Ni alloy coatings (1.6–1.9 GPa) was twice as great as the microhardness of zinc coating.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2008.08.067</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Corrosion ; Corrosion environments ; Corrosion resistance ; Cross-disciplinary physics: materials science; rheology ; Electrodeposition ; Exact sciences and technology ; Materials science ; Metallic coatings ; Metals. Metallurgy ; Microhardness ; Phase composition ; Physics ; Polyligand alkaline bath ; Production techniques ; Surface treatment ; Surface treatments ; Zinc–nickel alloys</subject><ispartof>Surface &amp; coatings technology, 2008-11, Vol.203 (3), p.234-239</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-1fffe89be74d515147653f384dfdcedb6a84aa6c0619978998fc399fc1a773453</citedby><cites>FETCH-LOGICAL-c439t-1fffe89be74d515147653f384dfdcedb6a84aa6c0619978998fc399fc1a773453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2008.08.067$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20889290$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsybulskaya, L.S.</creatorcontrib><creatorcontrib>Gaevskaya, T.V.</creatorcontrib><creatorcontrib>Purovskaya, O.G.</creatorcontrib><creatorcontrib>Byk, T.V.</creatorcontrib><title>Electrochemical deposition of zinc–nickel alloy coatings in a polyligand alkaline bath</title><title>Surface &amp; coatings technology</title><description>The polyligand alkaline bath for Zn–Ni alloy electrochemical deposition containing an aminoacetic acid (AAA) and triethanolamine (TEA) as the ligands to bind Ni(II) cations was developed. The alloy composition was greatly influenced by the [Zn(II)]/[Ni(II)] ratios in the bath, with the nickel content in the resultant deposit being varied in a wide range (from 8 to 75 at.%). X-ray diffraction studies revealed that the alloys consisted of the γ-phase (Ni 5Zn 21), solid solutions of Zn or Ni in the γ-phase, or of a mixture of the γ-phase and polycrystalline Ni or Zn. The high-quality coatings with the nickel content of 13–20 at.% having the γ-phase or solid solution of Zn in the γ-phase exhibited the highest corrosion resistance in a saline environment. To obtain corrosion-resistant alloys, the optimal Ni(II):АAA:ТEА molar ratio was found to be equal to 0.04:0.65:0.12. The microhardness of these Zn–Ni alloy coatings (1.6–1.9 GPa) was twice as great as the microhardness of zinc coating.</description><subject>Applied sciences</subject><subject>Corrosion</subject><subject>Corrosion environments</subject><subject>Corrosion resistance</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrodeposition</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Metallic coatings</subject><subject>Metals. Metallurgy</subject><subject>Microhardness</subject><subject>Phase composition</subject><subject>Physics</subject><subject>Polyligand alkaline bath</subject><subject>Production techniques</subject><subject>Surface treatment</subject><subject>Surface treatments</subject><subject>Zinc–nickel alloys</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKuvINnobmoymZkkO6XUHyi4UXAX0kzSpk2TmkyFuvIdfEOfxAxVt8KFu7jn3MP5ADjHaIQRbq6Wo7SNRgXZjUqE2Kifhh6AAWaUF4RU9BAMUFnTgnFaHoOTlJYIIUx5NQAvE6dVF4Na6LVV0sFWb0KynQ0eBgPfrVdfH5_eqpV2UDoXdrBPsn6eoPVQwk1wO2fn0rf5vJLOeg1nslucgiMjXdJnP3sInm8nT-P7Yvp49zC-mRaqIrwrsDFGMz7TtGprXOOKNjUxhFWtaZVuZ41klZSNQg3mnDLOmVGEc6OwpJRUNRmCy_3fTQyvW506sbZJaeek12GbBKlzDiYsC5u9UMWQUtRGbKJdy7gTGIkepFiKX5CiByn6aWg2XvwkyJQJmSi9sunPXSLGeMlR1l3vdTrXfbM6iqSs9rmFjZmxaIP9L-obbluPdg</recordid><startdate>20081125</startdate><enddate>20081125</enddate><creator>Tsybulskaya, L.S.</creator><creator>Gaevskaya, T.V.</creator><creator>Purovskaya, O.G.</creator><creator>Byk, T.V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20081125</creationdate><title>Electrochemical deposition of zinc–nickel alloy coatings in a polyligand alkaline bath</title><author>Tsybulskaya, L.S. ; Gaevskaya, T.V. ; Purovskaya, O.G. ; Byk, T.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-1fffe89be74d515147653f384dfdcedb6a84aa6c0619978998fc399fc1a773453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Corrosion</topic><topic>Corrosion environments</topic><topic>Corrosion resistance</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrodeposition</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Metallic coatings</topic><topic>Metals. Metallurgy</topic><topic>Microhardness</topic><topic>Phase composition</topic><topic>Physics</topic><topic>Polyligand alkaline bath</topic><topic>Production techniques</topic><topic>Surface treatment</topic><topic>Surface treatments</topic><topic>Zinc–nickel alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsybulskaya, L.S.</creatorcontrib><creatorcontrib>Gaevskaya, T.V.</creatorcontrib><creatorcontrib>Purovskaya, O.G.</creatorcontrib><creatorcontrib>Byk, T.V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsybulskaya, L.S.</au><au>Gaevskaya, T.V.</au><au>Purovskaya, O.G.</au><au>Byk, T.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical deposition of zinc–nickel alloy coatings in a polyligand alkaline bath</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2008-11-25</date><risdate>2008</risdate><volume>203</volume><issue>3</issue><spage>234</spage><epage>239</epage><pages>234-239</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>The polyligand alkaline bath for Zn–Ni alloy electrochemical deposition containing an aminoacetic acid (AAA) and triethanolamine (TEA) as the ligands to bind Ni(II) cations was developed. The alloy composition was greatly influenced by the [Zn(II)]/[Ni(II)] ratios in the bath, with the nickel content in the resultant deposit being varied in a wide range (from 8 to 75 at.%). X-ray diffraction studies revealed that the alloys consisted of the γ-phase (Ni 5Zn 21), solid solutions of Zn or Ni in the γ-phase, or of a mixture of the γ-phase and polycrystalline Ni or Zn. The high-quality coatings with the nickel content of 13–20 at.% having the γ-phase or solid solution of Zn in the γ-phase exhibited the highest corrosion resistance in a saline environment. To obtain corrosion-resistant alloys, the optimal Ni(II):АAA:ТEА molar ratio was found to be equal to 0.04:0.65:0.12. The microhardness of these Zn–Ni alloy coatings (1.6–1.9 GPa) was twice as great as the microhardness of zinc coating.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2008.08.067</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2008-11, Vol.203 (3), p.234-239
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_35439138
source Elsevier ScienceDirect Journals
subjects Applied sciences
Corrosion
Corrosion environments
Corrosion resistance
Cross-disciplinary physics: materials science
rheology
Electrodeposition
Exact sciences and technology
Materials science
Metallic coatings
Metals. Metallurgy
Microhardness
Phase composition
Physics
Polyligand alkaline bath
Production techniques
Surface treatment
Surface treatments
Zinc–nickel alloys
title Electrochemical deposition of zinc–nickel alloy coatings in a polyligand alkaline bath
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20deposition%20of%20zinc%E2%80%93nickel%20alloy%20coatings%20in%20a%20polyligand%20alkaline%20bath&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Tsybulskaya,%20L.S.&rft.date=2008-11-25&rft.volume=203&rft.issue=3&rft.spage=234&rft.epage=239&rft.pages=234-239&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2008.08.067&rft_dat=%3Cproquest_cross%3E35439138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35439138&rft_id=info:pmid/&rft_els_id=S0257897208008256&rfr_iscdi=true