Just-in-time control of time-varying discrete event dynamic systems in (max,+) algebra

We deal with timed event graphs whose holding times associated with places are variable. Defining a first-in-first-out functioning rule, we show that such graphs can be linearly described in (max,+) algebra. Moreover, this linear representation allows extending the just-in-time control synthesis exi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2008-10, Vol.46 (19), p.5337-5348
Hauptverfasser: Lahaye, S., Boimond, J.-L., Ferrier, J.-L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5348
container_issue 19
container_start_page 5337
container_title International journal of production research
container_volume 46
creator Lahaye, S.
Boimond, J.-L.
Ferrier, J.-L.
description We deal with timed event graphs whose holding times associated with places are variable. Defining a first-in-first-out functioning rule, we show that such graphs can be linearly described in (max,+) algebra. Moreover, this linear representation allows extending the just-in-time control synthesis existing for timed event graphs with constant holding times. An example is proposed in order to illustrate how the approach can be applied as a just-in-time strategy for production lines.
doi_str_mv 10.1080/00207540802273777
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_35392517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1561284001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-c1878d593bd4ed2b6bf17c7c12550d8f42799f71a07967afc7f751a352c3b5aa3</originalsourceid><addsrcrecordid>eNqFkc9PHCEUgIlpE7e2f0BvpIdG047lxzCPSbwYY2ubTby0TW-EYUAxM6DAru5_XzZrPGjScgEe38d7Lw-h95QcUyLJF0IYAdHWI2PAAWAPLSjvukZI-ecVWmzfmwrwffQm5xtSl5DtAv3-scql8aEpfrbYxFBSnHB0eHtv1jptfLjCo88m2WKxXdtQ8LgJevYG500uds7YB3w464fPn46wnq7skPRb9NrpKdt3j_sB-vX1_OfZRbO8_Pb97HTZmJbL0hgqQY6i58PY2pEN3eAoGDCUCUFG6VoGfe-AagJ9B9oZcCCo5oIZPgit-QE62v17rSd1m_xcC1ZRe3VxulTbGCFS9JTDmlb24469TfFuZXNRc23LTpMONq6y4oL3TFCo4Idn4E1cpVD7UIzKTvQgZIXoDjIp5pyse0pPidqORL0YSXVOdo4PLqZZ38c0jarozRSTSzoYX6v4lw7_1V9YqjwU_hcsUqG1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218659758</pqid></control><display><type>article</type><title>Just-in-time control of time-varying discrete event dynamic systems in (max,+) algebra</title><source>Taylor &amp; Francis Journals Complete</source><source>EBSCOhost Business Source Complete</source><creator>Lahaye, S. ; Boimond, J.-L. ; Ferrier, J.-L.</creator><creatorcontrib>Lahaye, S. ; Boimond, J.-L. ; Ferrier, J.-L.</creatorcontrib><description>We deal with timed event graphs whose holding times associated with places are variable. Defining a first-in-first-out functioning rule, we show that such graphs can be linearly described in (max,+) algebra. Moreover, this linear representation allows extending the just-in-time control synthesis existing for timed event graphs with constant holding times. An example is proposed in order to illustrate how the approach can be applied as a just-in-time strategy for production lines.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207540802273777</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>(max,+) algebra ; Assembly line ; Assembly lines ; Discrete event systems ; FIFO ; Graphs ; Just in time ; Just-in-time control ; Just-in-time production ; Operations research ; Studies ; Time-varying systems ; Timed event graphs</subject><ispartof>International journal of production research, 2008-10, Vol.46 (19), p.5337-5348</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2008</rights><rights>Copyright Taylor &amp; Francis Group Oct 2008</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-c1878d593bd4ed2b6bf17c7c12550d8f42799f71a07967afc7f751a352c3b5aa3</citedby><cites>FETCH-LOGICAL-c438t-c1878d593bd4ed2b6bf17c7c12550d8f42799f71a07967afc7f751a352c3b5aa3</cites><orcidid>0000-0002-8386-8803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207540802273777$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207540802273777$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00859137$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lahaye, S.</creatorcontrib><creatorcontrib>Boimond, J.-L.</creatorcontrib><creatorcontrib>Ferrier, J.-L.</creatorcontrib><title>Just-in-time control of time-varying discrete event dynamic systems in (max,+) algebra</title><title>International journal of production research</title><description>We deal with timed event graphs whose holding times associated with places are variable. Defining a first-in-first-out functioning rule, we show that such graphs can be linearly described in (max,+) algebra. Moreover, this linear representation allows extending the just-in-time control synthesis existing for timed event graphs with constant holding times. An example is proposed in order to illustrate how the approach can be applied as a just-in-time strategy for production lines.</description><subject>(max,+) algebra</subject><subject>Assembly line</subject><subject>Assembly lines</subject><subject>Discrete event systems</subject><subject>FIFO</subject><subject>Graphs</subject><subject>Just in time</subject><subject>Just-in-time control</subject><subject>Just-in-time production</subject><subject>Operations research</subject><subject>Studies</subject><subject>Time-varying systems</subject><subject>Timed event graphs</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkc9PHCEUgIlpE7e2f0BvpIdG047lxzCPSbwYY2ubTby0TW-EYUAxM6DAru5_XzZrPGjScgEe38d7Lw-h95QcUyLJF0IYAdHWI2PAAWAPLSjvukZI-ecVWmzfmwrwffQm5xtSl5DtAv3-scql8aEpfrbYxFBSnHB0eHtv1jptfLjCo88m2WKxXdtQ8LgJevYG500uds7YB3w464fPn46wnq7skPRb9NrpKdt3j_sB-vX1_OfZRbO8_Pb97HTZmJbL0hgqQY6i58PY2pEN3eAoGDCUCUFG6VoGfe-AagJ9B9oZcCCo5oIZPgit-QE62v17rSd1m_xcC1ZRe3VxulTbGCFS9JTDmlb24469TfFuZXNRc23LTpMONq6y4oL3TFCo4Idn4E1cpVD7UIzKTvQgZIXoDjIp5pyse0pPidqORL0YSXVOdo4PLqZZ38c0jarozRSTSzoYX6v4lw7_1V9YqjwU_hcsUqG1</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Lahaye, S.</creator><creator>Boimond, J.-L.</creator><creator>Ferrier, J.-L.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis LLC</general><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8386-8803</orcidid></search><sort><creationdate>20081001</creationdate><title>Just-in-time control of time-varying discrete event dynamic systems in (max,+) algebra</title><author>Lahaye, S. ; Boimond, J.-L. ; Ferrier, J.-L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-c1878d593bd4ed2b6bf17c7c12550d8f42799f71a07967afc7f751a352c3b5aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>(max,+) algebra</topic><topic>Assembly line</topic><topic>Assembly lines</topic><topic>Discrete event systems</topic><topic>FIFO</topic><topic>Graphs</topic><topic>Just in time</topic><topic>Just-in-time control</topic><topic>Just-in-time production</topic><topic>Operations research</topic><topic>Studies</topic><topic>Time-varying systems</topic><topic>Timed event graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lahaye, S.</creatorcontrib><creatorcontrib>Boimond, J.-L.</creatorcontrib><creatorcontrib>Ferrier, J.-L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lahaye, S.</au><au>Boimond, J.-L.</au><au>Ferrier, J.-L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Just-in-time control of time-varying discrete event dynamic systems in (max,+) algebra</atitle><jtitle>International journal of production research</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>46</volume><issue>19</issue><spage>5337</spage><epage>5348</epage><pages>5337-5348</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>We deal with timed event graphs whose holding times associated with places are variable. Defining a first-in-first-out functioning rule, we show that such graphs can be linearly described in (max,+) algebra. Moreover, this linear representation allows extending the just-in-time control synthesis existing for timed event graphs with constant holding times. An example is proposed in order to illustrate how the approach can be applied as a just-in-time strategy for production lines.</abstract><cop>London</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00207540802273777</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8386-8803</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2008-10, Vol.46 (19), p.5337-5348
issn 0020-7543
1366-588X
language eng
recordid cdi_proquest_miscellaneous_35392517
source Taylor & Francis Journals Complete; EBSCOhost Business Source Complete
subjects (max,+) algebra
Assembly line
Assembly lines
Discrete event systems
FIFO
Graphs
Just in time
Just-in-time control
Just-in-time production
Operations research
Studies
Time-varying systems
Timed event graphs
title Just-in-time control of time-varying discrete event dynamic systems in (max,+) algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Just-in-time%20control%20of%20time-varying%20discrete%20event%20dynamic%20systems%20in%20(max,+)%20algebra&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Lahaye,%20S.&rft.date=2008-10-01&rft.volume=46&rft.issue=19&rft.spage=5337&rft.epage=5348&rft.pages=5337-5348&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207540802273777&rft_dat=%3Cproquest_infor%3E1561284001%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218659758&rft_id=info:pmid/&rfr_iscdi=true