Discrete Models for Seismic Analysis of Liquid Storage Tanks of Arbitrary Shape and Fill Height

A finite element method (FEM)-based formulation is developed for an effective computation of the eigenmode frequencies, the decomposition of total liquid mass into impulsive and convective parts, and the distribution of wall pressures due to sloshing in liquid storage tanks of arbitrary shape and fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pressure vessel technology 2008-11, Vol.130 (4), p.041801 (12 )-041801 (12 )
Hauptverfasser: Drosos, G. C., Dimas, A. A., Karabalis, D. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 041801 (12 )
container_issue 4
container_start_page 041801 (12 )
container_title Journal of pressure vessel technology
container_volume 130
creator Drosos, G. C.
Dimas, A. A.
Karabalis, D. L.
description A finite element method (FEM)-based formulation is developed for an effective computation of the eigenmode frequencies, the decomposition of total liquid mass into impulsive and convective parts, and the distribution of wall pressures due to sloshing in liquid storage tanks of arbitrary shape and fill height. The fluid motion is considered to be inviscid (slip wall condition) and linear (small free-surface steepness). The natural modal frequencies and shapes of the sloshing modes are computed, as a function of the tank fill height, on the basis of a conventional FEM modeling. These results form the basis for a convective-impulsive decomposition of the total liquid mass, at any fill height, for the first few (two or three at most) sloshing modes, which are by far the most important ones in comparison to all other higher modes. This results into a simple yet accurate and robust model of discrete masses and springs for the sloshing behavior. The methodology is validated through comparison studies involving vertical cylindrical tanks. Additionally, the application of the proposed methodology to conical tanks and to the seismic analysis of spherical tanks on a rigid or flexible supporting system is demonstrated and the results are compared to those obtained by rigorous FEM analyses.
doi_str_mv 10.1115/1.2967834
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35349613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35349613</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-378d62ceb1ed694972c948e94388086619ce846e1602abf47068398ae1b248013</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEuVjYGbxAhJDis92HHusgAJSEUPLbLnJhbqkSWunQ_89hlasLHfS6blXeh9CroANASC_hyE3qtBCHpEB5Fxn2hT6mAwYMzIzRrBTchbjkjEQIocBsY8-lgF7pG9dhU2kdRfoFH1c-ZKOWtfsoo-0q-nEb7a-otO-C-4T6cy1X7_3UZj7Priwo9OFWyN1bUXHvmnoC_rPRX9BTmrXRLw87HPyMX6aPbxkk_fn14fRJHOi0H2WRqV4iXPAShlpCl4aqdFIoTXTSoEpUUuFoBh381oWTGlhtEOYc6lTmXNyu89dh26zxdjbVSqGTeNa7LbRilxIo1Lp_0AwiidnLIF3e7AMXYwBa7sOfpWKWmD2x7UFe3Cd2JtDqIula-rg2tLHvwfODHDGf7jrPefiCu2y24ZkOFqZK8iN-AaNMoSW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19628970</pqid></control><display><type>article</type><title>Discrete Models for Seismic Analysis of Liquid Storage Tanks of Arbitrary Shape and Fill Height</title><source>ASME_美国机械工程师学会现刊</source><creator>Drosos, G. C. ; Dimas, A. A. ; Karabalis, D. L.</creator><creatorcontrib>Drosos, G. C. ; Dimas, A. A. ; Karabalis, D. L.</creatorcontrib><description>A finite element method (FEM)-based formulation is developed for an effective computation of the eigenmode frequencies, the decomposition of total liquid mass into impulsive and convective parts, and the distribution of wall pressures due to sloshing in liquid storage tanks of arbitrary shape and fill height. The fluid motion is considered to be inviscid (slip wall condition) and linear (small free-surface steepness). The natural modal frequencies and shapes of the sloshing modes are computed, as a function of the tank fill height, on the basis of a conventional FEM modeling. These results form the basis for a convective-impulsive decomposition of the total liquid mass, at any fill height, for the first few (two or three at most) sloshing modes, which are by far the most important ones in comparison to all other higher modes. This results into a simple yet accurate and robust model of discrete masses and springs for the sloshing behavior. The methodology is validated through comparison studies involving vertical cylindrical tanks. Additionally, the application of the proposed methodology to conical tanks and to the seismic analysis of spherical tanks on a rigid or flexible supporting system is demonstrated and the results are compared to those obtained by rigorous FEM analyses.</description><identifier>ISSN: 0094-9930</identifier><identifier>EISSN: 1528-8978</identifier><identifier>DOI: 10.1115/1.2967834</identifier><identifier>CODEN: JPVTAS</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Mechanical engineering. Machine design ; Physics ; Seismic Engineering ; Solid mechanics ; Steel design ; Steel tanks and pressure vessels; boiler manufacturing ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of pressure vessel technology, 2008-11, Vol.130 (4), p.041801 (12 )-041801 (12 )</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-378d62ceb1ed694972c948e94388086619ce846e1602abf47068398ae1b248013</citedby><cites>FETCH-LOGICAL-a378t-378d62ceb1ed694972c948e94388086619ce846e1602abf47068398ae1b248013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20912024$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Drosos, G. C.</creatorcontrib><creatorcontrib>Dimas, A. A.</creatorcontrib><creatorcontrib>Karabalis, D. L.</creatorcontrib><title>Discrete Models for Seismic Analysis of Liquid Storage Tanks of Arbitrary Shape and Fill Height</title><title>Journal of pressure vessel technology</title><addtitle>J. Pressure Vessel Technol</addtitle><description>A finite element method (FEM)-based formulation is developed for an effective computation of the eigenmode frequencies, the decomposition of total liquid mass into impulsive and convective parts, and the distribution of wall pressures due to sloshing in liquid storage tanks of arbitrary shape and fill height. The fluid motion is considered to be inviscid (slip wall condition) and linear (small free-surface steepness). The natural modal frequencies and shapes of the sloshing modes are computed, as a function of the tank fill height, on the basis of a conventional FEM modeling. These results form the basis for a convective-impulsive decomposition of the total liquid mass, at any fill height, for the first few (two or three at most) sloshing modes, which are by far the most important ones in comparison to all other higher modes. This results into a simple yet accurate and robust model of discrete masses and springs for the sloshing behavior. The methodology is validated through comparison studies involving vertical cylindrical tanks. Additionally, the application of the proposed methodology to conical tanks and to the seismic analysis of spherical tanks on a rigid or flexible supporting system is demonstrated and the results are compared to those obtained by rigorous FEM analyses.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Mechanical engineering. Machine design</subject><subject>Physics</subject><subject>Seismic Engineering</subject><subject>Solid mechanics</subject><subject>Steel design</subject><subject>Steel tanks and pressure vessels; boiler manufacturing</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0094-9930</issn><issn>1528-8978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEuVjYGbxAhJDis92HHusgAJSEUPLbLnJhbqkSWunQ_89hlasLHfS6blXeh9CroANASC_hyE3qtBCHpEB5Fxn2hT6mAwYMzIzRrBTchbjkjEQIocBsY8-lgF7pG9dhU2kdRfoFH1c-ZKOWtfsoo-0q-nEb7a-otO-C-4T6cy1X7_3UZj7Priwo9OFWyN1bUXHvmnoC_rPRX9BTmrXRLw87HPyMX6aPbxkk_fn14fRJHOi0H2WRqV4iXPAShlpCl4aqdFIoTXTSoEpUUuFoBh381oWTGlhtEOYc6lTmXNyu89dh26zxdjbVSqGTeNa7LbRilxIo1Lp_0AwiidnLIF3e7AMXYwBa7sOfpWKWmD2x7UFe3Cd2JtDqIula-rg2tLHvwfODHDGf7jrPefiCu2y24ZkOFqZK8iN-AaNMoSW</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Drosos, G. C.</creator><creator>Dimas, A. A.</creator><creator>Karabalis, D. L.</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope><scope>7SM</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20081101</creationdate><title>Discrete Models for Seismic Analysis of Liquid Storage Tanks of Arbitrary Shape and Fill Height</title><author>Drosos, G. C. ; Dimas, A. A. ; Karabalis, D. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-378d62ceb1ed694972c948e94388086619ce846e1602abf47068398ae1b248013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Mechanical engineering. Machine design</topic><topic>Physics</topic><topic>Seismic Engineering</topic><topic>Solid mechanics</topic><topic>Steel design</topic><topic>Steel tanks and pressure vessels; boiler manufacturing</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drosos, G. C.</creatorcontrib><creatorcontrib>Dimas, A. A.</creatorcontrib><creatorcontrib>Karabalis, D. L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Earthquake Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of pressure vessel technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drosos, G. C.</au><au>Dimas, A. A.</au><au>Karabalis, D. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Models for Seismic Analysis of Liquid Storage Tanks of Arbitrary Shape and Fill Height</atitle><jtitle>Journal of pressure vessel technology</jtitle><stitle>J. Pressure Vessel Technol</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>130</volume><issue>4</issue><spage>041801 (12 )</spage><epage>041801 (12 )</epage><pages>041801 (12 )-041801 (12 )</pages><issn>0094-9930</issn><eissn>1528-8978</eissn><coden>JPVTAS</coden><abstract>A finite element method (FEM)-based formulation is developed for an effective computation of the eigenmode frequencies, the decomposition of total liquid mass into impulsive and convective parts, and the distribution of wall pressures due to sloshing in liquid storage tanks of arbitrary shape and fill height. The fluid motion is considered to be inviscid (slip wall condition) and linear (small free-surface steepness). The natural modal frequencies and shapes of the sloshing modes are computed, as a function of the tank fill height, on the basis of a conventional FEM modeling. These results form the basis for a convective-impulsive decomposition of the total liquid mass, at any fill height, for the first few (two or three at most) sloshing modes, which are by far the most important ones in comparison to all other higher modes. This results into a simple yet accurate and robust model of discrete masses and springs for the sloshing behavior. The methodology is validated through comparison studies involving vertical cylindrical tanks. Additionally, the application of the proposed methodology to conical tanks and to the seismic analysis of spherical tanks on a rigid or flexible supporting system is demonstrated and the results are compared to those obtained by rigorous FEM analyses.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2967834</doi></addata></record>
fulltext fulltext
identifier ISSN: 0094-9930
ispartof Journal of pressure vessel technology, 2008-11, Vol.130 (4), p.041801 (12 )-041801 (12 )
issn 0094-9930
1528-8978
language eng
recordid cdi_proquest_miscellaneous_35349613
source ASME_美国机械工程师学会现刊
subjects Applied sciences
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
General theory
Mechanical engineering. Machine design
Physics
Seismic Engineering
Solid mechanics
Steel design
Steel tanks and pressure vessels
boiler manufacturing
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Discrete Models for Seismic Analysis of Liquid Storage Tanks of Arbitrary Shape and Fill Height
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Models%20for%20Seismic%20Analysis%20of%20Liquid%20Storage%20Tanks%20of%20Arbitrary%20Shape%20and%20Fill%20Height&rft.jtitle=Journal%20of%20pressure%20vessel%20technology&rft.au=Drosos,%20G.%20C.&rft.date=2008-11-01&rft.volume=130&rft.issue=4&rft.spage=041801%20(12%20)&rft.epage=041801%20(12%20)&rft.pages=041801%20(12%20)-041801%20(12%20)&rft.issn=0094-9930&rft.eissn=1528-8978&rft.coden=JPVTAS&rft_id=info:doi/10.1115/1.2967834&rft_dat=%3Cproquest_cross%3E35349613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19628970&rft_id=info:pmid/&rfr_iscdi=true