Discrete Models for Seismic Analysis of Liquid Storage Tanks of Arbitrary Shape and Fill Height
A finite element method (FEM)-based formulation is developed for an effective computation of the eigenmode frequencies, the decomposition of total liquid mass into impulsive and convective parts, and the distribution of wall pressures due to sloshing in liquid storage tanks of arbitrary shape and fi...
Gespeichert in:
Veröffentlicht in: | Journal of pressure vessel technology 2008-11, Vol.130 (4), p.041801 (12 )-041801 (12 ) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 041801 (12 ) |
---|---|
container_issue | 4 |
container_start_page | 041801 (12 ) |
container_title | Journal of pressure vessel technology |
container_volume | 130 |
creator | Drosos, G. C. Dimas, A. A. Karabalis, D. L. |
description | A finite element method (FEM)-based formulation is developed for an effective computation of the eigenmode frequencies, the decomposition of total liquid mass into impulsive and convective parts, and the distribution of wall pressures due to sloshing in liquid storage tanks of arbitrary shape and fill height. The fluid motion is considered to be inviscid (slip wall condition) and linear (small free-surface steepness). The natural modal frequencies and shapes of the sloshing modes are computed, as a function of the tank fill height, on the basis of a conventional FEM modeling. These results form the basis for a convective-impulsive decomposition of the total liquid mass, at any fill height, for the first few (two or three at most) sloshing modes, which are by far the most important ones in comparison to all other higher modes. This results into a simple yet accurate and robust model of discrete masses and springs for the sloshing behavior. The methodology is validated through comparison studies involving vertical cylindrical tanks. Additionally, the application of the proposed methodology to conical tanks and to the seismic analysis of spherical tanks on a rigid or flexible supporting system is demonstrated and the results are compared to those obtained by rigorous FEM analyses. |
doi_str_mv | 10.1115/1.2967834 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35349613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35349613</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-378d62ceb1ed694972c948e94388086619ce846e1602abf47068398ae1b248013</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEuVjYGbxAhJDis92HHusgAJSEUPLbLnJhbqkSWunQ_89hlasLHfS6blXeh9CroANASC_hyE3qtBCHpEB5Fxn2hT6mAwYMzIzRrBTchbjkjEQIocBsY8-lgF7pG9dhU2kdRfoFH1c-ZKOWtfsoo-0q-nEb7a-otO-C-4T6cy1X7_3UZj7Priwo9OFWyN1bUXHvmnoC_rPRX9BTmrXRLw87HPyMX6aPbxkk_fn14fRJHOi0H2WRqV4iXPAShlpCl4aqdFIoTXTSoEpUUuFoBh381oWTGlhtEOYc6lTmXNyu89dh26zxdjbVSqGTeNa7LbRilxIo1Lp_0AwiidnLIF3e7AMXYwBa7sOfpWKWmD2x7UFe3Cd2JtDqIula-rg2tLHvwfODHDGf7jrPefiCu2y24ZkOFqZK8iN-AaNMoSW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19628970</pqid></control><display><type>article</type><title>Discrete Models for Seismic Analysis of Liquid Storage Tanks of Arbitrary Shape and Fill Height</title><source>ASME_美国机械工程师学会现刊</source><creator>Drosos, G. C. ; Dimas, A. A. ; Karabalis, D. L.</creator><creatorcontrib>Drosos, G. C. ; Dimas, A. A. ; Karabalis, D. L.</creatorcontrib><description>A finite element method (FEM)-based formulation is developed for an effective computation of the eigenmode frequencies, the decomposition of total liquid mass into impulsive and convective parts, and the distribution of wall pressures due to sloshing in liquid storage tanks of arbitrary shape and fill height. The fluid motion is considered to be inviscid (slip wall condition) and linear (small free-surface steepness). The natural modal frequencies and shapes of the sloshing modes are computed, as a function of the tank fill height, on the basis of a conventional FEM modeling. These results form the basis for a convective-impulsive decomposition of the total liquid mass, at any fill height, for the first few (two or three at most) sloshing modes, which are by far the most important ones in comparison to all other higher modes. This results into a simple yet accurate and robust model of discrete masses and springs for the sloshing behavior. The methodology is validated through comparison studies involving vertical cylindrical tanks. Additionally, the application of the proposed methodology to conical tanks and to the seismic analysis of spherical tanks on a rigid or flexible supporting system is demonstrated and the results are compared to those obtained by rigorous FEM analyses.</description><identifier>ISSN: 0094-9930</identifier><identifier>EISSN: 1528-8978</identifier><identifier>DOI: 10.1115/1.2967834</identifier><identifier>CODEN: JPVTAS</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Mechanical engineering. Machine design ; Physics ; Seismic Engineering ; Solid mechanics ; Steel design ; Steel tanks and pressure vessels; boiler manufacturing ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of pressure vessel technology, 2008-11, Vol.130 (4), p.041801 (12 )-041801 (12 )</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-378d62ceb1ed694972c948e94388086619ce846e1602abf47068398ae1b248013</citedby><cites>FETCH-LOGICAL-a378t-378d62ceb1ed694972c948e94388086619ce846e1602abf47068398ae1b248013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20912024$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Drosos, G. C.</creatorcontrib><creatorcontrib>Dimas, A. A.</creatorcontrib><creatorcontrib>Karabalis, D. L.</creatorcontrib><title>Discrete Models for Seismic Analysis of Liquid Storage Tanks of Arbitrary Shape and Fill Height</title><title>Journal of pressure vessel technology</title><addtitle>J. Pressure Vessel Technol</addtitle><description>A finite element method (FEM)-based formulation is developed for an effective computation of the eigenmode frequencies, the decomposition of total liquid mass into impulsive and convective parts, and the distribution of wall pressures due to sloshing in liquid storage tanks of arbitrary shape and fill height. The fluid motion is considered to be inviscid (slip wall condition) and linear (small free-surface steepness). The natural modal frequencies and shapes of the sloshing modes are computed, as a function of the tank fill height, on the basis of a conventional FEM modeling. These results form the basis for a convective-impulsive decomposition of the total liquid mass, at any fill height, for the first few (two or three at most) sloshing modes, which are by far the most important ones in comparison to all other higher modes. This results into a simple yet accurate and robust model of discrete masses and springs for the sloshing behavior. The methodology is validated through comparison studies involving vertical cylindrical tanks. Additionally, the application of the proposed methodology to conical tanks and to the seismic analysis of spherical tanks on a rigid or flexible supporting system is demonstrated and the results are compared to those obtained by rigorous FEM analyses.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Mechanical engineering. Machine design</subject><subject>Physics</subject><subject>Seismic Engineering</subject><subject>Solid mechanics</subject><subject>Steel design</subject><subject>Steel tanks and pressure vessels; boiler manufacturing</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0094-9930</issn><issn>1528-8978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEuVjYGbxAhJDis92HHusgAJSEUPLbLnJhbqkSWunQ_89hlasLHfS6blXeh9CroANASC_hyE3qtBCHpEB5Fxn2hT6mAwYMzIzRrBTchbjkjEQIocBsY8-lgF7pG9dhU2kdRfoFH1c-ZKOWtfsoo-0q-nEb7a-otO-C-4T6cy1X7_3UZj7Priwo9OFWyN1bUXHvmnoC_rPRX9BTmrXRLw87HPyMX6aPbxkk_fn14fRJHOi0H2WRqV4iXPAShlpCl4aqdFIoTXTSoEpUUuFoBh381oWTGlhtEOYc6lTmXNyu89dh26zxdjbVSqGTeNa7LbRilxIo1Lp_0AwiidnLIF3e7AMXYwBa7sOfpWKWmD2x7UFe3Cd2JtDqIula-rg2tLHvwfODHDGf7jrPefiCu2y24ZkOFqZK8iN-AaNMoSW</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Drosos, G. C.</creator><creator>Dimas, A. A.</creator><creator>Karabalis, D. L.</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope><scope>7SM</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20081101</creationdate><title>Discrete Models for Seismic Analysis of Liquid Storage Tanks of Arbitrary Shape and Fill Height</title><author>Drosos, G. C. ; Dimas, A. A. ; Karabalis, D. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-378d62ceb1ed694972c948e94388086619ce846e1602abf47068398ae1b248013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Mechanical engineering. Machine design</topic><topic>Physics</topic><topic>Seismic Engineering</topic><topic>Solid mechanics</topic><topic>Steel design</topic><topic>Steel tanks and pressure vessels; boiler manufacturing</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drosos, G. C.</creatorcontrib><creatorcontrib>Dimas, A. A.</creatorcontrib><creatorcontrib>Karabalis, D. L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Earthquake Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of pressure vessel technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drosos, G. C.</au><au>Dimas, A. A.</au><au>Karabalis, D. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Models for Seismic Analysis of Liquid Storage Tanks of Arbitrary Shape and Fill Height</atitle><jtitle>Journal of pressure vessel technology</jtitle><stitle>J. Pressure Vessel Technol</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>130</volume><issue>4</issue><spage>041801 (12 )</spage><epage>041801 (12 )</epage><pages>041801 (12 )-041801 (12 )</pages><issn>0094-9930</issn><eissn>1528-8978</eissn><coden>JPVTAS</coden><abstract>A finite element method (FEM)-based formulation is developed for an effective computation of the eigenmode frequencies, the decomposition of total liquid mass into impulsive and convective parts, and the distribution of wall pressures due to sloshing in liquid storage tanks of arbitrary shape and fill height. The fluid motion is considered to be inviscid (slip wall condition) and linear (small free-surface steepness). The natural modal frequencies and shapes of the sloshing modes are computed, as a function of the tank fill height, on the basis of a conventional FEM modeling. These results form the basis for a convective-impulsive decomposition of the total liquid mass, at any fill height, for the first few (two or three at most) sloshing modes, which are by far the most important ones in comparison to all other higher modes. This results into a simple yet accurate and robust model of discrete masses and springs for the sloshing behavior. The methodology is validated through comparison studies involving vertical cylindrical tanks. Additionally, the application of the proposed methodology to conical tanks and to the seismic analysis of spherical tanks on a rigid or flexible supporting system is demonstrated and the results are compared to those obtained by rigorous FEM analyses.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2967834</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-9930 |
ispartof | Journal of pressure vessel technology, 2008-11, Vol.130 (4), p.041801 (12 )-041801 (12 ) |
issn | 0094-9930 1528-8978 |
language | eng |
recordid | cdi_proquest_miscellaneous_35349613 |
source | ASME_美国机械工程师学会现刊 |
subjects | Applied sciences Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) General theory Mechanical engineering. Machine design Physics Seismic Engineering Solid mechanics Steel design Steel tanks and pressure vessels boiler manufacturing Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Discrete Models for Seismic Analysis of Liquid Storage Tanks of Arbitrary Shape and Fill Height |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Models%20for%20Seismic%20Analysis%20of%20Liquid%20Storage%20Tanks%20of%20Arbitrary%20Shape%20and%20Fill%20Height&rft.jtitle=Journal%20of%20pressure%20vessel%20technology&rft.au=Drosos,%20G.%20C.&rft.date=2008-11-01&rft.volume=130&rft.issue=4&rft.spage=041801%20(12%20)&rft.epage=041801%20(12%20)&rft.pages=041801%20(12%20)-041801%20(12%20)&rft.issn=0094-9930&rft.eissn=1528-8978&rft.coden=JPVTAS&rft_id=info:doi/10.1115/1.2967834&rft_dat=%3Cproquest_cross%3E35349613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19628970&rft_id=info:pmid/&rfr_iscdi=true |