Improved vertical covariance estimates for ensemble-filter assimilation of near-surface observations

Strategies to improve covariance estimates for ensemble-based assimilation of near-surface observations in atmospheric models are explored. It is known that localization of covariance estimates can improve conditioning of covariance matrices in the assimilation process by removing spurious elements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2007-03, Vol.135 (3), p.1021-1036
Hauptverfasser: HACKER, Joshua P, ANDERSON, Jeffrey L, PAGOWSKI, Mariusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1036
container_issue 3
container_start_page 1021
container_title Monthly weather review
container_volume 135
creator HACKER, Joshua P
ANDERSON, Jeffrey L
PAGOWSKI, Mariusz
description Strategies to improve covariance estimates for ensemble-based assimilation of near-surface observations in atmospheric models are explored. It is known that localization of covariance estimates can improve conditioning of covariance matrices in the assimilation process by removing spurious elements and increasing the rank of the matrix. Vertical covariance localization is the focus of this work, and two basic approaches are compared: 1) a recently proposed hierarchical filter approach based on sampling theory and 2) a more commonly used fifth-order piecewise rational function. The hierarchical filter allows for dynamic estimates of localization functions and does not place any restrictions on their form. The rational function is optimized for every analysis time of day and for every possible observation and state variable combination. The methods are tested with a column model containing PBL and land surface parameterization schemes that are available in current mesoscale modeling systems. The results are expected to provide context for assimilation of near-surface observations in mesoscale models, which will benefit short-range mesoscale NWP applications. Results show that both the hierarchical and rational function approaches effectively improve covariance estimates from small ensembles. The hierarchical approach provides localization functions that are irregular and more closely related to PBL structure. Analysis of eigenvalue spectra show that both approaches improve the rank of the covariance matrices, but the amount of improvement is not always directly related to the assimilation performance. Results also show that specifying different localization functions for different observation and state variable combinations is more important than including time dependence.
doi_str_mv 10.1175/mwr3333.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35272037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2826361250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-787afc9484f55e710194dc6a5716e80b25534d58a205ec71a045b0fa90d408b23</originalsourceid><addsrcrecordid>eNqFkcuK1UAQhhtR8Hh04RsERcFFxqpO37KUwcvAiCCKy9DpVEMPSXrsyjmDb28fZ0AQZGpTi_rq9v9CPEc4Q7T67XJTuhpn-EDsUEtoQfXdQ7EDkLYFo9Rj8YT5CgCMUXInpovluuQjTc2RypaCn5uQj74kvwZqiLe0-I24ibk0tDIt40xtTPNGpfHMaUmz31JemxyblXxp-VCir615ZCrHPzV-Kh5FPzM9u8t78f3D-2_nn9rLLx8vzt9dtkGD21rrrI-hV05FrckiYK-mYLy2aMjBKLXu1KSdl6ApWPSg9AjR9zApcKPs9uL17dz60s9DPX5YEgeaZ79SPvDQaWkldPZeUGKHRsH9IPYG3UnwvXj5D3iVD2Wt3w7SSdMZlBoq9eJ_FPYOEaVyFXpzC4WSmQvF4bpUF8qvAWE4mTx8_vH1tHPAyr66G-i5ehdLtS3x3wZnpMYq22_iraWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198111248</pqid></control><display><type>article</type><title>Improved vertical covariance estimates for ensemble-filter assimilation of near-surface observations</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>HACKER, Joshua P ; ANDERSON, Jeffrey L ; PAGOWSKI, Mariusz</creator><creatorcontrib>HACKER, Joshua P ; ANDERSON, Jeffrey L ; PAGOWSKI, Mariusz</creatorcontrib><description>Strategies to improve covariance estimates for ensemble-based assimilation of near-surface observations in atmospheric models are explored. It is known that localization of covariance estimates can improve conditioning of covariance matrices in the assimilation process by removing spurious elements and increasing the rank of the matrix. Vertical covariance localization is the focus of this work, and two basic approaches are compared: 1) a recently proposed hierarchical filter approach based on sampling theory and 2) a more commonly used fifth-order piecewise rational function. The hierarchical filter allows for dynamic estimates of localization functions and does not place any restrictions on their form. The rational function is optimized for every analysis time of day and for every possible observation and state variable combination. The methods are tested with a column model containing PBL and land surface parameterization schemes that are available in current mesoscale modeling systems. The results are expected to provide context for assimilation of near-surface observations in mesoscale models, which will benefit short-range mesoscale NWP applications. Results show that both the hierarchical and rational function approaches effectively improve covariance estimates from small ensembles. The hierarchical approach provides localization functions that are irregular and more closely related to PBL structure. Analysis of eigenvalue spectra show that both approaches improve the rank of the covariance matrices, but the amount of improvement is not always directly related to the assimilation performance. Results also show that specifying different localization functions for different observation and state variable combinations is more important than including time dependence.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/mwr3333.1</identifier><identifier>CODEN: MWREAB</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Assimilation ; Atmospheric models ; Covariance matrix ; Data assimilation ; Earth, ocean, space ; Eigenvalues ; Estimates ; Exact sciences and technology ; Experiments ; External geophysics ; Localization ; Mesoscale models ; Mesoscale phenomena ; Meteorology ; Modelling ; Parameterization ; Rational functions ; State variable ; Studies ; Time dependence ; Time of use</subject><ispartof>Monthly weather review, 2007-03, Vol.135 (3), p.1021-1036</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Meteorological Society Mar 2007</rights><rights>Copyright American Meteorological Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-787afc9484f55e710194dc6a5716e80b25534d58a205ec71a045b0fa90d408b23</citedby><cites>FETCH-LOGICAL-c508t-787afc9484f55e710194dc6a5716e80b25534d58a205ec71a045b0fa90d408b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3682,27926,27927</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18625155$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HACKER, Joshua P</creatorcontrib><creatorcontrib>ANDERSON, Jeffrey L</creatorcontrib><creatorcontrib>PAGOWSKI, Mariusz</creatorcontrib><title>Improved vertical covariance estimates for ensemble-filter assimilation of near-surface observations</title><title>Monthly weather review</title><description>Strategies to improve covariance estimates for ensemble-based assimilation of near-surface observations in atmospheric models are explored. It is known that localization of covariance estimates can improve conditioning of covariance matrices in the assimilation process by removing spurious elements and increasing the rank of the matrix. Vertical covariance localization is the focus of this work, and two basic approaches are compared: 1) a recently proposed hierarchical filter approach based on sampling theory and 2) a more commonly used fifth-order piecewise rational function. The hierarchical filter allows for dynamic estimates of localization functions and does not place any restrictions on their form. The rational function is optimized for every analysis time of day and for every possible observation and state variable combination. The methods are tested with a column model containing PBL and land surface parameterization schemes that are available in current mesoscale modeling systems. The results are expected to provide context for assimilation of near-surface observations in mesoscale models, which will benefit short-range mesoscale NWP applications. Results show that both the hierarchical and rational function approaches effectively improve covariance estimates from small ensembles. The hierarchical approach provides localization functions that are irregular and more closely related to PBL structure. Analysis of eigenvalue spectra show that both approaches improve the rank of the covariance matrices, but the amount of improvement is not always directly related to the assimilation performance. Results also show that specifying different localization functions for different observation and state variable combinations is more important than including time dependence.</description><subject>Assimilation</subject><subject>Atmospheric models</subject><subject>Covariance matrix</subject><subject>Data assimilation</subject><subject>Earth, ocean, space</subject><subject>Eigenvalues</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>External geophysics</subject><subject>Localization</subject><subject>Mesoscale models</subject><subject>Mesoscale phenomena</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Parameterization</subject><subject>Rational functions</subject><subject>State variable</subject><subject>Studies</subject><subject>Time dependence</subject><subject>Time of use</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcuK1UAQhhtR8Hh04RsERcFFxqpO37KUwcvAiCCKy9DpVEMPSXrsyjmDb28fZ0AQZGpTi_rq9v9CPEc4Q7T67XJTuhpn-EDsUEtoQfXdQ7EDkLYFo9Rj8YT5CgCMUXInpovluuQjTc2RypaCn5uQj74kvwZqiLe0-I24ibk0tDIt40xtTPNGpfHMaUmz31JemxyblXxp-VCir615ZCrHPzV-Kh5FPzM9u8t78f3D-2_nn9rLLx8vzt9dtkGD21rrrI-hV05FrckiYK-mYLy2aMjBKLXu1KSdl6ApWPSg9AjR9zApcKPs9uL17dz60s9DPX5YEgeaZ79SPvDQaWkldPZeUGKHRsH9IPYG3UnwvXj5D3iVD2Wt3w7SSdMZlBoq9eJ_FPYOEaVyFXpzC4WSmQvF4bpUF8qvAWE4mTx8_vH1tHPAyr66G-i5ehdLtS3x3wZnpMYq22_iraWw</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>HACKER, Joshua P</creator><creator>ANDERSON, Jeffrey L</creator><creator>PAGOWSKI, Mariusz</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20070301</creationdate><title>Improved vertical covariance estimates for ensemble-filter assimilation of near-surface observations</title><author>HACKER, Joshua P ; ANDERSON, Jeffrey L ; PAGOWSKI, Mariusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-787afc9484f55e710194dc6a5716e80b25534d58a205ec71a045b0fa90d408b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Assimilation</topic><topic>Atmospheric models</topic><topic>Covariance matrix</topic><topic>Data assimilation</topic><topic>Earth, ocean, space</topic><topic>Eigenvalues</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>External geophysics</topic><topic>Localization</topic><topic>Mesoscale models</topic><topic>Mesoscale phenomena</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Parameterization</topic><topic>Rational functions</topic><topic>State variable</topic><topic>Studies</topic><topic>Time dependence</topic><topic>Time of use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HACKER, Joshua P</creatorcontrib><creatorcontrib>ANDERSON, Jeffrey L</creatorcontrib><creatorcontrib>PAGOWSKI, Mariusz</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HACKER, Joshua P</au><au>ANDERSON, Jeffrey L</au><au>PAGOWSKI, Mariusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved vertical covariance estimates for ensemble-filter assimilation of near-surface observations</atitle><jtitle>Monthly weather review</jtitle><date>2007-03-01</date><risdate>2007</risdate><volume>135</volume><issue>3</issue><spage>1021</spage><epage>1036</epage><pages>1021-1036</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><coden>MWREAB</coden><abstract>Strategies to improve covariance estimates for ensemble-based assimilation of near-surface observations in atmospheric models are explored. It is known that localization of covariance estimates can improve conditioning of covariance matrices in the assimilation process by removing spurious elements and increasing the rank of the matrix. Vertical covariance localization is the focus of this work, and two basic approaches are compared: 1) a recently proposed hierarchical filter approach based on sampling theory and 2) a more commonly used fifth-order piecewise rational function. The hierarchical filter allows for dynamic estimates of localization functions and does not place any restrictions on their form. The rational function is optimized for every analysis time of day and for every possible observation and state variable combination. The methods are tested with a column model containing PBL and land surface parameterization schemes that are available in current mesoscale modeling systems. The results are expected to provide context for assimilation of near-surface observations in mesoscale models, which will benefit short-range mesoscale NWP applications. Results show that both the hierarchical and rational function approaches effectively improve covariance estimates from small ensembles. The hierarchical approach provides localization functions that are irregular and more closely related to PBL structure. Analysis of eigenvalue spectra show that both approaches improve the rank of the covariance matrices, but the amount of improvement is not always directly related to the assimilation performance. Results also show that specifying different localization functions for different observation and state variable combinations is more important than including time dependence.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/mwr3333.1</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-0644
ispartof Monthly weather review, 2007-03, Vol.135 (3), p.1021-1036
issn 0027-0644
1520-0493
language eng
recordid cdi_proquest_miscellaneous_35272037
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Assimilation
Atmospheric models
Covariance matrix
Data assimilation
Earth, ocean, space
Eigenvalues
Estimates
Exact sciences and technology
Experiments
External geophysics
Localization
Mesoscale models
Mesoscale phenomena
Meteorology
Modelling
Parameterization
Rational functions
State variable
Studies
Time dependence
Time of use
title Improved vertical covariance estimates for ensemble-filter assimilation of near-surface observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20vertical%20covariance%20estimates%20for%20ensemble-filter%20assimilation%20of%20near-surface%20observations&rft.jtitle=Monthly%20weather%20review&rft.au=HACKER,%20Joshua%20P&rft.date=2007-03-01&rft.volume=135&rft.issue=3&rft.spage=1021&rft.epage=1036&rft.pages=1021-1036&rft.issn=0027-0644&rft.eissn=1520-0493&rft.coden=MWREAB&rft_id=info:doi/10.1175/mwr3333.1&rft_dat=%3Cproquest_cross%3E2826361250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198111248&rft_id=info:pmid/&rfr_iscdi=true