Microstructural development and mechanical properties of interrupted aged Al-Mg-Si-Cu alloy

The effects of a recently developed interrupted aging procedure on the microstructural development and mechanical properties of the commercial Al-Mg-Si-Cu alloy 6061 have been studied using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and mechanical testing. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2006-10, Vol.37 (10), p.3119-3130
Hauptverfasser: BUHA, J, LUMLEY, R. N, CROSKY, A. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3130
container_issue 10
container_start_page 3119
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 37
creator BUHA, J
LUMLEY, R. N
CROSKY, A. G
description The effects of a recently developed interrupted aging procedure on the microstructural development and mechanical properties of the commercial Al-Mg-Si-Cu alloy 6061 have been studied using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and mechanical testing. This so-called T616 temper involves partially aging the alloy at a typical T6 temperature (the underaging stage), quenching, then holding at a reduced temperature (in this case 65DGC) to facilitate further hardening (the secondary aging stage), prior to final aging to peak properties at, or close to, the initial aging (T6) temperature (the reaging stage). The T616 aging treatment produces simultaneous increases in tensile properties, hardness, and toughness, as compared with conventional T6. The overall improvement in the mechanical properties of 6061 T616 is associated with the formation of a greater number of finer, and more densely dispersed, beta" precipitates in the final microstructure. Secondary precipitation took place during the interrupted aging stage of the T616 temper, resulting in the formation of a large number of Guinier-Preston (GP) zones that served as precursors to the needlelike beta" precipitates when elevated temperature aging was resumed.
doi_str_mv 10.1007/s11661-006-0192-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35250980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1151127951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-509a564f8e956aa6bf6e4866ac16846eb3d6ab1d7ad52963d27b8308c1c3b17e3</originalsourceid><addsrcrecordid>eNqFkUtr3TAQhU1JoHn0B3RnCulOzYxljaRluDQPSOii7aoLIcvj1MHXdiU7JP8-utxAoJtsJMF8Z2Z0TlF8RviGAPo8IRKhACABaCvx9KE4QlVLgbaGg_wGLYWiSn4sjlN6AMiUpKPiz10f4pSWuIZljX4oW37kYZq3PC6lH9tyy-GvH_uQS3OcZo5Lz6mcurIfF45xnRduS3-fj4tB3N2Ln73YrKUfhun5tDjs_JD40-t9Uvy-_P5rcy1uf1zdbC5uRZBWLUKB9YrqzrBV5D01HXFtiHxAMjVxI1vyDbbat6qyJNtKN0aCCRhkg5rlSfF13zcv-G_ltLhtnwIPgx95WpOTqsozDLwLVlZKrLR9HzQWjSaVwS__gQ_TGsf8W1eh1KCzyxnCPbRzOkXu3Bz7rY_PDsHt0nP79FxOz-3Sc09Zc_ba2KfsfRf9GPr0JjSoCSTIF8HQmeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213707193</pqid></control><display><type>article</type><title>Microstructural development and mechanical properties of interrupted aged Al-Mg-Si-Cu alloy</title><source>SpringerLink Journals - AutoHoldings</source><creator>BUHA, J ; LUMLEY, R. N ; CROSKY, A. G</creator><creatorcontrib>BUHA, J ; LUMLEY, R. N ; CROSKY, A. G</creatorcontrib><description>The effects of a recently developed interrupted aging procedure on the microstructural development and mechanical properties of the commercial Al-Mg-Si-Cu alloy 6061 have been studied using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and mechanical testing. This so-called T616 temper involves partially aging the alloy at a typical T6 temperature (the underaging stage), quenching, then holding at a reduced temperature (in this case 65DGC) to facilitate further hardening (the secondary aging stage), prior to final aging to peak properties at, or close to, the initial aging (T6) temperature (the reaging stage). The T616 aging treatment produces simultaneous increases in tensile properties, hardness, and toughness, as compared with conventional T6. The overall improvement in the mechanical properties of 6061 T616 is associated with the formation of a greater number of finer, and more densely dispersed, beta" precipitates in the final microstructure. Secondary precipitation took place during the interrupted aging stage of the T616 temper, resulting in the formation of a large number of Guinier-Preston (GP) zones that served as precursors to the needlelike beta" precipitates when elevated temperature aging was resumed.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-006-0192-x</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Aluminum alloys ; Aluminum magnesium silicon alloys ; Applied sciences ; Differential scanning calorimetry ; Exact sciences and technology ; Fracture toughness ; Mechanical properties ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microstructure ; Quenching ; Solid solutions ; Transmission electron microscopy</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2006-10, Vol.37 (10), p.3119-3130</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Minerals, Metals &amp; Materials Society Oct 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-509a564f8e956aa6bf6e4866ac16846eb3d6ab1d7ad52963d27b8308c1c3b17e3</citedby><cites>FETCH-LOGICAL-c395t-509a564f8e956aa6bf6e4866ac16846eb3d6ab1d7ad52963d27b8308c1c3b17e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18176030$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BUHA, J</creatorcontrib><creatorcontrib>LUMLEY, R. N</creatorcontrib><creatorcontrib>CROSKY, A. G</creatorcontrib><title>Microstructural development and mechanical properties of interrupted aged Al-Mg-Si-Cu alloy</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><description>The effects of a recently developed interrupted aging procedure on the microstructural development and mechanical properties of the commercial Al-Mg-Si-Cu alloy 6061 have been studied using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and mechanical testing. This so-called T616 temper involves partially aging the alloy at a typical T6 temperature (the underaging stage), quenching, then holding at a reduced temperature (in this case 65DGC) to facilitate further hardening (the secondary aging stage), prior to final aging to peak properties at, or close to, the initial aging (T6) temperature (the reaging stage). The T616 aging treatment produces simultaneous increases in tensile properties, hardness, and toughness, as compared with conventional T6. The overall improvement in the mechanical properties of 6061 T616 is associated with the formation of a greater number of finer, and more densely dispersed, beta" precipitates in the final microstructure. Secondary precipitation took place during the interrupted aging stage of the T616 temper, resulting in the formation of a large number of Guinier-Preston (GP) zones that served as precursors to the needlelike beta" precipitates when elevated temperature aging was resumed.</description><subject>Aluminum alloys</subject><subject>Aluminum magnesium silicon alloys</subject><subject>Applied sciences</subject><subject>Differential scanning calorimetry</subject><subject>Exact sciences and technology</subject><subject>Fracture toughness</subject><subject>Mechanical properties</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Quenching</subject><subject>Solid solutions</subject><subject>Transmission electron microscopy</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtr3TAQhU1JoHn0B3RnCulOzYxljaRluDQPSOii7aoLIcvj1MHXdiU7JP8-utxAoJtsJMF8Z2Z0TlF8RviGAPo8IRKhACABaCvx9KE4QlVLgbaGg_wGLYWiSn4sjlN6AMiUpKPiz10f4pSWuIZljX4oW37kYZq3PC6lH9tyy-GvH_uQS3OcZo5Lz6mcurIfF45xnRduS3-fj4tB3N2Ln73YrKUfhun5tDjs_JD40-t9Uvy-_P5rcy1uf1zdbC5uRZBWLUKB9YrqzrBV5D01HXFtiHxAMjVxI1vyDbbat6qyJNtKN0aCCRhkg5rlSfF13zcv-G_ltLhtnwIPgx95WpOTqsozDLwLVlZKrLR9HzQWjSaVwS__gQ_TGsf8W1eh1KCzyxnCPbRzOkXu3Bz7rY_PDsHt0nP79FxOz-3Sc09Zc_ba2KfsfRf9GPr0JjSoCSTIF8HQmeE</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>BUHA, J</creator><creator>LUMLEY, R. N</creator><creator>CROSKY, A. G</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QF</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20061001</creationdate><title>Microstructural development and mechanical properties of interrupted aged Al-Mg-Si-Cu alloy</title><author>BUHA, J ; LUMLEY, R. N ; CROSKY, A. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-509a564f8e956aa6bf6e4866ac16846eb3d6ab1d7ad52963d27b8308c1c3b17e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aluminum alloys</topic><topic>Aluminum magnesium silicon alloys</topic><topic>Applied sciences</topic><topic>Differential scanning calorimetry</topic><topic>Exact sciences and technology</topic><topic>Fracture toughness</topic><topic>Mechanical properties</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Quenching</topic><topic>Solid solutions</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BUHA, J</creatorcontrib><creatorcontrib>LUMLEY, R. N</creatorcontrib><creatorcontrib>CROSKY, A. G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aluminium Industry Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BUHA, J</au><au>LUMLEY, R. N</au><au>CROSKY, A. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural development and mechanical properties of interrupted aged Al-Mg-Si-Cu alloy</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><date>2006-10-01</date><risdate>2006</risdate><volume>37</volume><issue>10</issue><spage>3119</spage><epage>3130</epage><pages>3119-3130</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The effects of a recently developed interrupted aging procedure on the microstructural development and mechanical properties of the commercial Al-Mg-Si-Cu alloy 6061 have been studied using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and mechanical testing. This so-called T616 temper involves partially aging the alloy at a typical T6 temperature (the underaging stage), quenching, then holding at a reduced temperature (in this case 65DGC) to facilitate further hardening (the secondary aging stage), prior to final aging to peak properties at, or close to, the initial aging (T6) temperature (the reaging stage). The T616 aging treatment produces simultaneous increases in tensile properties, hardness, and toughness, as compared with conventional T6. The overall improvement in the mechanical properties of 6061 T616 is associated with the formation of a greater number of finer, and more densely dispersed, beta" precipitates in the final microstructure. Secondary precipitation took place during the interrupted aging stage of the T616 temper, resulting in the formation of a large number of Guinier-Preston (GP) zones that served as precursors to the needlelike beta" precipitates when elevated temperature aging was resumed.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s11661-006-0192-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2006-10, Vol.37 (10), p.3119-3130
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_35250980
source SpringerLink Journals - AutoHoldings
subjects Aluminum alloys
Aluminum magnesium silicon alloys
Applied sciences
Differential scanning calorimetry
Exact sciences and technology
Fracture toughness
Mechanical properties
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Microstructure
Quenching
Solid solutions
Transmission electron microscopy
title Microstructural development and mechanical properties of interrupted aged Al-Mg-Si-Cu alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20development%20and%20mechanical%20properties%20of%20interrupted%20aged%20Al-Mg-Si-Cu%20alloy&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=BUHA,%20J&rft.date=2006-10-01&rft.volume=37&rft.issue=10&rft.spage=3119&rft.epage=3130&rft.pages=3119-3130&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-006-0192-x&rft_dat=%3Cproquest_cross%3E1151127951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213707193&rft_id=info:pmid/&rfr_iscdi=true