A least squares method for spectral analysis of space-time series

Common methods in spectral analyses of satellite data are the discrete Fourier transform (DFT) type of approaches, which generally require regular sampling and uniform spacing. These conditions sometimes cannot be met in the satellite applications, for example, such as one made by the High Resolutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 1995-10, Vol.52 (20), p.3501-3511
Hauptverfasser: WU, D. L, HAYS, P. B, SKINNER, W. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3511
container_issue 20
container_start_page 3501
container_title Journal of the atmospheric sciences
container_volume 52
creator WU, D. L
HAYS, P. B
SKINNER, W. R
description Common methods in spectral analyses of satellite data are the discrete Fourier transform (DFT) type of approaches, which generally require regular sampling and uniform spacing. These conditions sometimes cannot be met in the satellite applications, for example, such as one made by the High Resolution Doppler Imager (HRDI) on board the Upper Atmosphere Research Satellite (UARS). To be able to handle irregular sampling cases, a least squares fitting method is established here for a space-time Fourier analysis and has been applied to the HRDI sampling as well as other regular sampling cases. This method can resolve space-time spectra as robustly and accurately as DFT-type methods for the regular cases. In the same fashion, given an appropriate sampling pattern, it can also handle the irregular cases in which there exist large data gaps, frequent mode changes, and varying weight samples. Various sampling schemes and the associated aliasing spectra are examined. A better sampling plan than those currently used by the UARS instruments to reduce spectral aliasing is proposed, which leads to the question of how to optimize satellite sampling in the future.
doi_str_mv 10.1175/1520-0469(1995)052<3501:alsmfs>2.0.co;2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35240266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21242586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-6f295573189789142aadf914b68a351b8c778fab9e8dab310dda00defd70c10f3</originalsourceid><addsrcrecordid>eNqFkUFLHDEUgINYcN36HwYpRQ-zJi-TSVJFWJZqC1s8qOfwNpPQkZmdNW_24L9vBsVDL5vLg_DxPXgfY1eCL4TQ6koo4CWvanshrFWXXMGNVFz8wI76SLew4As_XMMRm32Sx2zGOUBZWTAn7JTohecHWszYcll0AWks6HWPKVDRh_Hv0BRxSAXtgh8TdgVusXujlooh5k_0oRzbPhQUUhvoK_sS8-5w9jHn7Pnu59PqV7l-uP-9Wq5Lr8CMZR3BKqWlMFYbKypAbGKem9qgVGJjvNYm4sYG0-BGCt40yHkTYqO5FzzKOfv-7t2l4XUfaHR9Sz50HW7DsCcnFVQc6vogCLrKh9TqMCigAmUOG4URRgs7gef_gS_DPuXrZZmsFVhtdYbu3yGfBqIUotultsf05gR3U2I3hXNTODcldjmxmxK75frxz92jA8fd6iEb5-zbxzokj11MuPUtfepkbZWURv4DWmuoyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236529797</pqid></control><display><type>article</type><title>A least squares method for spectral analysis of space-time series</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>WU, D. L ; HAYS, P. B ; SKINNER, W. R</creator><creatorcontrib>WU, D. L ; HAYS, P. B ; SKINNER, W. R</creatorcontrib><description>Common methods in spectral analyses of satellite data are the discrete Fourier transform (DFT) type of approaches, which generally require regular sampling and uniform spacing. These conditions sometimes cannot be met in the satellite applications, for example, such as one made by the High Resolution Doppler Imager (HRDI) on board the Upper Atmosphere Research Satellite (UARS). To be able to handle irregular sampling cases, a least squares fitting method is established here for a space-time Fourier analysis and has been applied to the HRDI sampling as well as other regular sampling cases. This method can resolve space-time spectra as robustly and accurately as DFT-type methods for the regular cases. In the same fashion, given an appropriate sampling pattern, it can also handle the irregular cases in which there exist large data gaps, frequent mode changes, and varying weight samples. Various sampling schemes and the associated aliasing spectra are examined. A better sampling plan than those currently used by the UARS instruments to reduce spectral aliasing is proposed, which leads to the question of how to optimize satellite sampling in the future.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/1520-0469(1995)052&lt;3501:alsmfs&gt;2.0.co;2</identifier><identifier>CODEN: JAHSAK</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Atmosphere ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fourier analysis ; Geophysics. Techniques, methods, instrumentation and models ; Least squares method ; Meteorological satellites ; Meteorology ; Spectral analysis</subject><ispartof>Journal of the atmospheric sciences, 1995-10, Vol.52 (20), p.3501-3511</ispartof><rights>1995 INIST-CNRS</rights><rights>Copyright American Meteorological Society Oct 15, 1995</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3695338$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>WU, D. L</creatorcontrib><creatorcontrib>HAYS, P. B</creatorcontrib><creatorcontrib>SKINNER, W. R</creatorcontrib><title>A least squares method for spectral analysis of space-time series</title><title>Journal of the atmospheric sciences</title><description>Common methods in spectral analyses of satellite data are the discrete Fourier transform (DFT) type of approaches, which generally require regular sampling and uniform spacing. These conditions sometimes cannot be met in the satellite applications, for example, such as one made by the High Resolution Doppler Imager (HRDI) on board the Upper Atmosphere Research Satellite (UARS). To be able to handle irregular sampling cases, a least squares fitting method is established here for a space-time Fourier analysis and has been applied to the HRDI sampling as well as other regular sampling cases. This method can resolve space-time spectra as robustly and accurately as DFT-type methods for the regular cases. In the same fashion, given an appropriate sampling pattern, it can also handle the irregular cases in which there exist large data gaps, frequent mode changes, and varying weight samples. Various sampling schemes and the associated aliasing spectra are examined. A better sampling plan than those currently used by the UARS instruments to reduce spectral aliasing is proposed, which leads to the question of how to optimize satellite sampling in the future.</description><subject>Atmosphere</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fourier analysis</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Least squares method</subject><subject>Meteorological satellites</subject><subject>Meteorology</subject><subject>Spectral analysis</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqFkUFLHDEUgINYcN36HwYpRQ-zJi-TSVJFWJZqC1s8qOfwNpPQkZmdNW_24L9vBsVDL5vLg_DxPXgfY1eCL4TQ6koo4CWvanshrFWXXMGNVFz8wI76SLew4As_XMMRm32Sx2zGOUBZWTAn7JTohecHWszYcll0AWks6HWPKVDRh_Hv0BRxSAXtgh8TdgVusXujlooh5k_0oRzbPhQUUhvoK_sS8-5w9jHn7Pnu59PqV7l-uP-9Wq5Lr8CMZR3BKqWlMFYbKypAbGKem9qgVGJjvNYm4sYG0-BGCt40yHkTYqO5FzzKOfv-7t2l4XUfaHR9Sz50HW7DsCcnFVQc6vogCLrKh9TqMCigAmUOG4URRgs7gef_gS_DPuXrZZmsFVhtdYbu3yGfBqIUotultsf05gR3U2I3hXNTODcldjmxmxK75frxz92jA8fd6iEb5-zbxzokj11MuPUtfepkbZWURv4DWmuoyQ</recordid><startdate>19951015</startdate><enddate>19951015</enddate><creator>WU, D. L</creator><creator>HAYS, P. B</creator><creator>SKINNER, W. R</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>19951015</creationdate><title>A least squares method for spectral analysis of space-time series</title><author>WU, D. L ; HAYS, P. B ; SKINNER, W. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-6f295573189789142aadf914b68a351b8c778fab9e8dab310dda00defd70c10f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Atmosphere</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fourier analysis</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Least squares method</topic><topic>Meteorological satellites</topic><topic>Meteorology</topic><topic>Spectral analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WU, D. L</creatorcontrib><creatorcontrib>HAYS, P. B</creatorcontrib><creatorcontrib>SKINNER, W. R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WU, D. L</au><au>HAYS, P. B</au><au>SKINNER, W. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A least squares method for spectral analysis of space-time series</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>1995-10-15</date><risdate>1995</risdate><volume>52</volume><issue>20</issue><spage>3501</spage><epage>3511</epage><pages>3501-3511</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><coden>JAHSAK</coden><abstract>Common methods in spectral analyses of satellite data are the discrete Fourier transform (DFT) type of approaches, which generally require regular sampling and uniform spacing. These conditions sometimes cannot be met in the satellite applications, for example, such as one made by the High Resolution Doppler Imager (HRDI) on board the Upper Atmosphere Research Satellite (UARS). To be able to handle irregular sampling cases, a least squares fitting method is established here for a space-time Fourier analysis and has been applied to the HRDI sampling as well as other regular sampling cases. This method can resolve space-time spectra as robustly and accurately as DFT-type methods for the regular cases. In the same fashion, given an appropriate sampling pattern, it can also handle the irregular cases in which there exist large data gaps, frequent mode changes, and varying weight samples. Various sampling schemes and the associated aliasing spectra are examined. A better sampling plan than those currently used by the UARS instruments to reduce spectral aliasing is proposed, which leads to the question of how to optimize satellite sampling in the future.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0469(1995)052&lt;3501:alsmfs&gt;2.0.co;2</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 1995-10, Vol.52 (20), p.3501-3511
issn 0022-4928
1520-0469
language eng
recordid cdi_proquest_miscellaneous_35240266
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Atmosphere
Earth, ocean, space
Exact sciences and technology
External geophysics
Fourier analysis
Geophysics. Techniques, methods, instrumentation and models
Least squares method
Meteorological satellites
Meteorology
Spectral analysis
title A least squares method for spectral analysis of space-time series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20least%20squares%20method%20for%20spectral%20analysis%20of%20space-time%20series&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=WU,%20D.%20L&rft.date=1995-10-15&rft.volume=52&rft.issue=20&rft.spage=3501&rft.epage=3511&rft.pages=3501-3511&rft.issn=0022-4928&rft.eissn=1520-0469&rft.coden=JAHSAK&rft_id=info:doi/10.1175/1520-0469(1995)052%3C3501:alsmfs%3E2.0.co;2&rft_dat=%3Cproquest_cross%3E21242586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236529797&rft_id=info:pmid/&rfr_iscdi=true