The multiple-parameter fractional Fourier transform

The fractional Fourier transform (FRFT) has multiplicity, which is intrinsic in fractional operator. A new source for the multiplicity of the weight-type fractional Fourier transform (WFRFT) is proposed, which can generalize the weight coefficients of WFRFT to contain two vector parameters m,n ∈ Z^M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Information sciences 2008-08, Vol.51 (8), p.1010-1024
Hauptverfasser: Lang, Jun, Tao, Ran, Ran, QiWen, Wang, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1024
container_issue 8
container_start_page 1010
container_title Science China. Information sciences
container_volume 51
creator Lang, Jun
Tao, Ran
Ran, QiWen
Wang, Yue
description The fractional Fourier transform (FRFT) has multiplicity, which is intrinsic in fractional operator. A new source for the multiplicity of the weight-type fractional Fourier transform (WFRFT) is proposed, which can generalize the weight coefficients of WFRFT to contain two vector parameters m,n ∈ Z^M . Therefore a generalized fractional Fourier transform can be defined, which is denoted by the multiple-parameter fractional Fourier transform (MPFRFT). It enlarges the multiplicity of the FRFT, which not only includes the conventional FRFT and general multi-fractional Fourier transform as special cases, but also introduces new fractional Fourier transforms. It provides a unified framework for the FRFT, and the method is also available for fractionalizing other linear operators. In addition, numerical simulations of the MPFRFT on the Hermite-Gaussian and rectangular functions have been performed as a simple application of MPFRFT to signal processing.
doi_str_mv 10.1007/s11432-008-0073-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35226071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>29069329</cqvip_id><sourcerecordid>35226071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-cb7a0e6f10f8d86f00e900728709fcf615aae1660b89c9e18e20fa6f5e0592183</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8P4K4ouIueJJ1cllKsCgU3dR3SeNJOnVuTmYVvb8oUBBcuQkL4_nN-PkJuGDwwAPWYGJsJTgF0PkpQeUImTEtOuRbyNL8BDOWqUOfkIqUdwIxzwSZErLY4rYeqL7sKaeeiq7HHOA3R-b5sG1dNF-0Qy_zVR9ek0Mb6ipwFVyW8Pt6X5GPxvJq_0uX7y9v8aUm9ULOe-rVygDIwCPpTywCAJnfjWoEJPkhWOIdMSlhr4w0yjRyCk6FAKAxnWlyS-3FuF9v9gKm3dZk8VpVrsB2SFQXnEhTL4N0fcJc75-7JcnOwAAXjmWIj5WObUsRgu1jWLn5bBvYg0Y4SbZZoDxKtzBk-ZlJmmw3G38n_hW6Pi7Zts9nnnF07_xXKCnMfkEZwI34ALzd-XQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918620512</pqid></control><display><type>article</type><title>The multiple-parameter fractional Fourier transform</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Lang, Jun ; Tao, Ran ; Ran, QiWen ; Wang, Yue</creator><creatorcontrib>Lang, Jun ; Tao, Ran ; Ran, QiWen ; Wang, Yue</creatorcontrib><description>The fractional Fourier transform (FRFT) has multiplicity, which is intrinsic in fractional operator. A new source for the multiplicity of the weight-type fractional Fourier transform (WFRFT) is proposed, which can generalize the weight coefficients of WFRFT to contain two vector parameters m,n ∈ Z^M . Therefore a generalized fractional Fourier transform can be defined, which is denoted by the multiple-parameter fractional Fourier transform (MPFRFT). It enlarges the multiplicity of the FRFT, which not only includes the conventional FRFT and general multi-fractional Fourier transform as special cases, but also introduces new fractional Fourier transforms. It provides a unified framework for the FRFT, and the method is also available for fractionalizing other linear operators. In addition, numerical simulations of the MPFRFT on the Hermite-Gaussian and rectangular functions have been performed as a simple application of MPFRFT to signal processing.</description><identifier>ISSN: 1009-2757</identifier><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1862-2836</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-008-0073-6</identifier><language>eng</language><publisher>Heidelberg: SP Science in China Press</publisher><subject>Computer Science ; Fourier transforms ; Information Systems and Communication Service ; Linear operators ; Operators (mathematics) ; Parameters ; 多参数傅里叶变换 ; 多样性 ; 权重系数</subject><ispartof>Science China. Information sciences, 2008-08, Vol.51 (8), p.1010-1024</ispartof><rights>Science in China Press and Springer-Verlag GmbH 2008</rights><rights>Science in China Press and Springer-Verlag GmbH 2008.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-cb7a0e6f10f8d86f00e900728709fcf615aae1660b89c9e18e20fa6f5e0592183</citedby><cites>FETCH-LOGICAL-c374t-cb7a0e6f10f8d86f00e900728709fcf615aae1660b89c9e18e20fa6f5e0592183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009X/84009X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-008-0073-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918620512?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Lang, Jun</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>Ran, QiWen</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><title>The multiple-parameter fractional Fourier transform</title><title>Science China. Information sciences</title><addtitle>Sci. China Ser. F-Inf. Sci</addtitle><addtitle>Science in China(Series F)</addtitle><description>The fractional Fourier transform (FRFT) has multiplicity, which is intrinsic in fractional operator. A new source for the multiplicity of the weight-type fractional Fourier transform (WFRFT) is proposed, which can generalize the weight coefficients of WFRFT to contain two vector parameters m,n ∈ Z^M . Therefore a generalized fractional Fourier transform can be defined, which is denoted by the multiple-parameter fractional Fourier transform (MPFRFT). It enlarges the multiplicity of the FRFT, which not only includes the conventional FRFT and general multi-fractional Fourier transform as special cases, but also introduces new fractional Fourier transforms. It provides a unified framework for the FRFT, and the method is also available for fractionalizing other linear operators. In addition, numerical simulations of the MPFRFT on the Hermite-Gaussian and rectangular functions have been performed as a simple application of MPFRFT to signal processing.</description><subject>Computer Science</subject><subject>Fourier transforms</subject><subject>Information Systems and Communication Service</subject><subject>Linear operators</subject><subject>Operators (mathematics)</subject><subject>Parameters</subject><subject>多参数傅里叶变换</subject><subject>多样性</subject><subject>权重系数</subject><issn>1009-2757</issn><issn>1674-733X</issn><issn>1862-2836</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWC8P4K4ouIueJJ1cllKsCgU3dR3SeNJOnVuTmYVvb8oUBBcuQkL4_nN-PkJuGDwwAPWYGJsJTgF0PkpQeUImTEtOuRbyNL8BDOWqUOfkIqUdwIxzwSZErLY4rYeqL7sKaeeiq7HHOA3R-b5sG1dNF-0Qy_zVR9ek0Mb6ipwFVyW8Pt6X5GPxvJq_0uX7y9v8aUm9ULOe-rVygDIwCPpTywCAJnfjWoEJPkhWOIdMSlhr4w0yjRyCk6FAKAxnWlyS-3FuF9v9gKm3dZk8VpVrsB2SFQXnEhTL4N0fcJc75-7JcnOwAAXjmWIj5WObUsRgu1jWLn5bBvYg0Y4SbZZoDxKtzBk-ZlJmmw3G38n_hW6Pi7Zts9nnnF07_xXKCnMfkEZwI34ALzd-XQ</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Lang, Jun</creator><creator>Tao, Ran</creator><creator>Ran, QiWen</creator><creator>Wang, Yue</creator><general>SP Science in China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080801</creationdate><title>The multiple-parameter fractional Fourier transform</title><author>Lang, Jun ; Tao, Ran ; Ran, QiWen ; Wang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-cb7a0e6f10f8d86f00e900728709fcf615aae1660b89c9e18e20fa6f5e0592183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computer Science</topic><topic>Fourier transforms</topic><topic>Information Systems and Communication Service</topic><topic>Linear operators</topic><topic>Operators (mathematics)</topic><topic>Parameters</topic><topic>多参数傅里叶变换</topic><topic>多样性</topic><topic>权重系数</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, Jun</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>Ran, QiWen</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lang, Jun</au><au>Tao, Ran</au><au>Ran, QiWen</au><au>Wang, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The multiple-parameter fractional Fourier transform</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Ser. F-Inf. Sci</stitle><addtitle>Science in China(Series F)</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>51</volume><issue>8</issue><spage>1010</spage><epage>1024</epage><pages>1010-1024</pages><issn>1009-2757</issn><issn>1674-733X</issn><eissn>1862-2836</eissn><eissn>1869-1919</eissn><abstract>The fractional Fourier transform (FRFT) has multiplicity, which is intrinsic in fractional operator. A new source for the multiplicity of the weight-type fractional Fourier transform (WFRFT) is proposed, which can generalize the weight coefficients of WFRFT to contain two vector parameters m,n ∈ Z^M . Therefore a generalized fractional Fourier transform can be defined, which is denoted by the multiple-parameter fractional Fourier transform (MPFRFT). It enlarges the multiplicity of the FRFT, which not only includes the conventional FRFT and general multi-fractional Fourier transform as special cases, but also introduces new fractional Fourier transforms. It provides a unified framework for the FRFT, and the method is also available for fractionalizing other linear operators. In addition, numerical simulations of the MPFRFT on the Hermite-Gaussian and rectangular functions have been performed as a simple application of MPFRFT to signal processing.</abstract><cop>Heidelberg</cop><pub>SP Science in China Press</pub><doi>10.1007/s11432-008-0073-6</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1009-2757
ispartof Science China. Information sciences, 2008-08, Vol.51 (8), p.1010-1024
issn 1009-2757
1674-733X
1862-2836
1869-1919
language eng
recordid cdi_proquest_miscellaneous_35226071
source SpringerLink Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Computer Science
Fourier transforms
Information Systems and Communication Service
Linear operators
Operators (mathematics)
Parameters
多参数傅里叶变换
多样性
权重系数
title The multiple-parameter fractional Fourier transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20multiple-parameter%20fractional%20Fourier%20transform&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Lang,%20Jun&rft.date=2008-08-01&rft.volume=51&rft.issue=8&rft.spage=1010&rft.epage=1024&rft.pages=1010-1024&rft.issn=1009-2757&rft.eissn=1862-2836&rft_id=info:doi/10.1007/s11432-008-0073-6&rft_dat=%3Cproquest_cross%3E35226071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918620512&rft_id=info:pmid/&rft_cqvip_id=29069329&rfr_iscdi=true