Thermochemical and Mechanical Stabilities of the Oxide Scale of ZrB2+SiC and Oxygen Transport Mechanisms
Refractory diboride with silicon carbide additive has a unique oxide scale microstructure with two condensed oxide phases (solid+liquid), and demonstrates oxidation resistance superior to either monolithic diboride or silicon carbide. We rationalize that this is because the silica‐rich liquid phase...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2008-05, Vol.91 (5), p.1475-1480 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1480 |
---|---|
container_issue | 5 |
container_start_page | 1475 |
container_title | Journal of the American Ceramic Society |
container_volume | 91 |
creator | Li, Ju Lenosky, Thomas J. Först, Clemens J. Yip, Sidney |
description | Refractory diboride with silicon carbide additive has a unique oxide scale microstructure with two condensed oxide phases (solid+liquid), and demonstrates oxidation resistance superior to either monolithic diboride or silicon carbide. We rationalize that this is because the silica‐rich liquid phase can retreat outward to remove the high SiO gas volatility region, while still holding onto the zirconia skeleton mechanically by capillary forces, to form a “solid pillars, liquid roof ” scale architecture and maintain barrier function. Basic assessment of the oxygen carriers in the borosilicate liquid in oxygen‐rich condition is performed using first‐principles calculations. It is estimated from entropy and mobility arguments that above a critical temperature TC∼1500°C, the dominant oxygen carriers should be network defects, such as peroxyl linkage or oxygen‐deficient centers, instead of molecular O2* as in the Deal–Grove model. These network defects will lead to sublinear dependence of the oxidation rate with external oxygen partial pressure. The present work suggests that there could be significant room in improving the high‐temperature oxidation resistance by refining the oxide scale microstructure as well as controlling the glass chemistry. |
doi_str_mv | 10.1111/j.1551-2916.2008.02319.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_35210481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35210481</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2909-2be3b4d5e681b19cc495795cb4bda515a637cb637d72121c4cdf92a6df409613</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEuXxD9nABiV4_EjiFYKqFBC0Qq2ExMZyHIe45FHiINK_J2mhXow9vtdH44uQBziAfl2vAuAcfCIgDAjGcYAJBRF0B2i0Fw7RCGNM_Cgm-BidOLfqWxAxG6F8mZumrHVuSqtV4akq9V6MzlW1bRetSmxhW2ucV2demxtv3tnUeIteNcPVe3NHrhZ2vH057zYfpvKWjarcum7af5Qr3Rk6ylThzPnffoqW95Pl-MF_nk8fx7fPviUCC58khiYs5SaMIQGhNRM8ElwnLEkVB65CGumkL2lEgIBmOs0EUWGaMSxCoKfocoddN_XXt3GtLK3TpihUZepvJykngFk8GC_-jMr1f8n6kbV1ct3YUjUbSTDllDHW-252vh9bmM1eByyH-OVKDinLIWU5xC-38ctOPt2OJ9tzT_B3BOta0-0JqvmUYUQjLt9mUwmzMIRpPJOv9BdXyInN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35210481</pqid></control><display><type>article</type><title>Thermochemical and Mechanical Stabilities of the Oxide Scale of ZrB2+SiC and Oxygen Transport Mechanisms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Ju ; Lenosky, Thomas J. ; Först, Clemens J. ; Yip, Sidney</creator><creatorcontrib>Li, Ju ; Lenosky, Thomas J. ; Först, Clemens J. ; Yip, Sidney</creatorcontrib><description>Refractory diboride with silicon carbide additive has a unique oxide scale microstructure with two condensed oxide phases (solid+liquid), and demonstrates oxidation resistance superior to either monolithic diboride or silicon carbide. We rationalize that this is because the silica‐rich liquid phase can retreat outward to remove the high SiO gas volatility region, while still holding onto the zirconia skeleton mechanically by capillary forces, to form a “solid pillars, liquid roof ” scale architecture and maintain barrier function. Basic assessment of the oxygen carriers in the borosilicate liquid in oxygen‐rich condition is performed using first‐principles calculations. It is estimated from entropy and mobility arguments that above a critical temperature TC∼1500°C, the dominant oxygen carriers should be network defects, such as peroxyl linkage or oxygen‐deficient centers, instead of molecular O2* as in the Deal–Grove model. These network defects will lead to sublinear dependence of the oxidation rate with external oxygen partial pressure. The present work suggests that there could be significant room in improving the high‐temperature oxidation resistance by refining the oxide scale microstructure as well as controlling the glass chemistry.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2008.02319.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Applied sciences ; Building materials. Ceramics. Glasses ; Ceramic industries ; Cermets, ceramic and refractory composites ; Chemical industry and chemicals ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Other materials ; Physics ; Specific materials ; Structural ceramics ; Technical ceramics</subject><ispartof>Journal of the American Ceramic Society, 2008-05, Vol.91 (5), p.1475-1480</ispartof><rights>2008 The American Ceramic Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1551-2916.2008.02319.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1551-2916.2008.02319.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23910,23911,25119,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20353444$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Ju</creatorcontrib><creatorcontrib>Lenosky, Thomas J.</creatorcontrib><creatorcontrib>Först, Clemens J.</creatorcontrib><creatorcontrib>Yip, Sidney</creatorcontrib><title>Thermochemical and Mechanical Stabilities of the Oxide Scale of ZrB2+SiC and Oxygen Transport Mechanisms</title><title>Journal of the American Ceramic Society</title><description>Refractory diboride with silicon carbide additive has a unique oxide scale microstructure with two condensed oxide phases (solid+liquid), and demonstrates oxidation resistance superior to either monolithic diboride or silicon carbide. We rationalize that this is because the silica‐rich liquid phase can retreat outward to remove the high SiO gas volatility region, while still holding onto the zirconia skeleton mechanically by capillary forces, to form a “solid pillars, liquid roof ” scale architecture and maintain barrier function. Basic assessment of the oxygen carriers in the borosilicate liquid in oxygen‐rich condition is performed using first‐principles calculations. It is estimated from entropy and mobility arguments that above a critical temperature TC∼1500°C, the dominant oxygen carriers should be network defects, such as peroxyl linkage or oxygen‐deficient centers, instead of molecular O2* as in the Deal–Grove model. These network defects will lead to sublinear dependence of the oxidation rate with external oxygen partial pressure. The present work suggests that there could be significant room in improving the high‐temperature oxidation resistance by refining the oxide scale microstructure as well as controlling the glass chemistry.</description><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Cermets, ceramic and refractory composites</subject><subject>Chemical industry and chemicals</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Other materials</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Structural ceramics</subject><subject>Technical ceramics</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEuXxD9nABiV4_EjiFYKqFBC0Qq2ExMZyHIe45FHiINK_J2mhXow9vtdH44uQBziAfl2vAuAcfCIgDAjGcYAJBRF0B2i0Fw7RCGNM_Cgm-BidOLfqWxAxG6F8mZumrHVuSqtV4akq9V6MzlW1bRetSmxhW2ucV2demxtv3tnUeIteNcPVe3NHrhZ2vH057zYfpvKWjarcum7af5Qr3Rk6ylThzPnffoqW95Pl-MF_nk8fx7fPviUCC58khiYs5SaMIQGhNRM8ElwnLEkVB65CGumkL2lEgIBmOs0EUWGaMSxCoKfocoddN_XXt3GtLK3TpihUZepvJykngFk8GC_-jMr1f8n6kbV1ct3YUjUbSTDllDHW-252vh9bmM1eByyH-OVKDinLIWU5xC-38ctOPt2OJ9tzT_B3BOta0-0JqvmUYUQjLt9mUwmzMIRpPJOv9BdXyInN</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Li, Ju</creator><creator>Lenosky, Thomas J.</creator><creator>Först, Clemens J.</creator><creator>Yip, Sidney</creator><general>Blackwell Publishing Inc</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>200805</creationdate><title>Thermochemical and Mechanical Stabilities of the Oxide Scale of ZrB2+SiC and Oxygen Transport Mechanisms</title><author>Li, Ju ; Lenosky, Thomas J. ; Först, Clemens J. ; Yip, Sidney</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2909-2be3b4d5e681b19cc495795cb4bda515a637cb637d72121c4cdf92a6df409613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Cermets, ceramic and refractory composites</topic><topic>Chemical industry and chemicals</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Other materials</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Structural ceramics</topic><topic>Technical ceramics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ju</creatorcontrib><creatorcontrib>Lenosky, Thomas J.</creatorcontrib><creatorcontrib>Först, Clemens J.</creatorcontrib><creatorcontrib>Yip, Sidney</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ju</au><au>Lenosky, Thomas J.</au><au>Först, Clemens J.</au><au>Yip, Sidney</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermochemical and Mechanical Stabilities of the Oxide Scale of ZrB2+SiC and Oxygen Transport Mechanisms</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2008-05</date><risdate>2008</risdate><volume>91</volume><issue>5</issue><spage>1475</spage><epage>1480</epage><pages>1475-1480</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Refractory diboride with silicon carbide additive has a unique oxide scale microstructure with two condensed oxide phases (solid+liquid), and demonstrates oxidation resistance superior to either monolithic diboride or silicon carbide. We rationalize that this is because the silica‐rich liquid phase can retreat outward to remove the high SiO gas volatility region, while still holding onto the zirconia skeleton mechanically by capillary forces, to form a “solid pillars, liquid roof ” scale architecture and maintain barrier function. Basic assessment of the oxygen carriers in the borosilicate liquid in oxygen‐rich condition is performed using first‐principles calculations. It is estimated from entropy and mobility arguments that above a critical temperature TC∼1500°C, the dominant oxygen carriers should be network defects, such as peroxyl linkage or oxygen‐deficient centers, instead of molecular O2* as in the Deal–Grove model. These network defects will lead to sublinear dependence of the oxidation rate with external oxygen partial pressure. The present work suggests that there could be significant room in improving the high‐temperature oxidation resistance by refining the oxide scale microstructure as well as controlling the glass chemistry.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1551-2916.2008.02319.x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2008-05, Vol.91 (5), p.1475-1480 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_35210481 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Building materials. Ceramics. Glasses Ceramic industries Cermets, ceramic and refractory composites Chemical industry and chemicals Cross-disciplinary physics: materials science rheology Exact sciences and technology Materials science Other materials Physics Specific materials Structural ceramics Technical ceramics |
title | Thermochemical and Mechanical Stabilities of the Oxide Scale of ZrB2+SiC and Oxygen Transport Mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermochemical%20and%20Mechanical%20Stabilities%20of%20the%20Oxide%20Scale%20of%20ZrB2+SiC%20and%20Oxygen%20Transport%20Mechanisms&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Li,%20Ju&rft.date=2008-05&rft.volume=91&rft.issue=5&rft.spage=1475&rft.epage=1480&rft.pages=1475-1480&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1551-2916.2008.02319.x&rft_dat=%3Cproquest_pasca%3E35210481%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35210481&rft_id=info:pmid/&rfr_iscdi=true |