Thermochemical and Mechanical Stabilities of the Oxide Scale of ZrB2+SiC and Oxygen Transport Mechanisms

Refractory diboride with silicon carbide additive has a unique oxide scale microstructure with two condensed oxide phases (solid+liquid), and demonstrates oxidation resistance superior to either monolithic diboride or silicon carbide. We rationalize that this is because the silica‐rich liquid phase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2008-05, Vol.91 (5), p.1475-1480
Hauptverfasser: Li, Ju, Lenosky, Thomas J., Först, Clemens J., Yip, Sidney
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1480
container_issue 5
container_start_page 1475
container_title Journal of the American Ceramic Society
container_volume 91
creator Li, Ju
Lenosky, Thomas J.
Först, Clemens J.
Yip, Sidney
description Refractory diboride with silicon carbide additive has a unique oxide scale microstructure with two condensed oxide phases (solid+liquid), and demonstrates oxidation resistance superior to either monolithic diboride or silicon carbide. We rationalize that this is because the silica‐rich liquid phase can retreat outward to remove the high SiO gas volatility region, while still holding onto the zirconia skeleton mechanically by capillary forces, to form a “solid pillars, liquid roof ” scale architecture and maintain barrier function. Basic assessment of the oxygen carriers in the borosilicate liquid in oxygen‐rich condition is performed using first‐principles calculations. It is estimated from entropy and mobility arguments that above a critical temperature TC∼1500°C, the dominant oxygen carriers should be network defects, such as peroxyl linkage or oxygen‐deficient centers, instead of molecular O2* as in the Deal–Grove model. These network defects will lead to sublinear dependence of the oxidation rate with external oxygen partial pressure. The present work suggests that there could be significant room in improving the high‐temperature oxidation resistance by refining the oxide scale microstructure as well as controlling the glass chemistry.
doi_str_mv 10.1111/j.1551-2916.2008.02319.x
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_35210481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35210481</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2909-2be3b4d5e681b19cc495795cb4bda515a637cb637d72121c4cdf92a6df409613</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEuXxD9nABiV4_EjiFYKqFBC0Qq2ExMZyHIe45FHiINK_J2mhXow9vtdH44uQBziAfl2vAuAcfCIgDAjGcYAJBRF0B2i0Fw7RCGNM_Cgm-BidOLfqWxAxG6F8mZumrHVuSqtV4akq9V6MzlW1bRetSmxhW2ucV2demxtv3tnUeIteNcPVe3NHrhZ2vH057zYfpvKWjarcum7af5Qr3Rk6ylThzPnffoqW95Pl-MF_nk8fx7fPviUCC58khiYs5SaMIQGhNRM8ElwnLEkVB65CGumkL2lEgIBmOs0EUWGaMSxCoKfocoddN_XXt3GtLK3TpihUZepvJykngFk8GC_-jMr1f8n6kbV1ct3YUjUbSTDllDHW-252vh9bmM1eByyH-OVKDinLIWU5xC-38ctOPt2OJ9tzT_B3BOta0-0JqvmUYUQjLt9mUwmzMIRpPJOv9BdXyInN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35210481</pqid></control><display><type>article</type><title>Thermochemical and Mechanical Stabilities of the Oxide Scale of ZrB2+SiC and Oxygen Transport Mechanisms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Ju ; Lenosky, Thomas J. ; Först, Clemens J. ; Yip, Sidney</creator><creatorcontrib>Li, Ju ; Lenosky, Thomas J. ; Först, Clemens J. ; Yip, Sidney</creatorcontrib><description>Refractory diboride with silicon carbide additive has a unique oxide scale microstructure with two condensed oxide phases (solid+liquid), and demonstrates oxidation resistance superior to either monolithic diboride or silicon carbide. We rationalize that this is because the silica‐rich liquid phase can retreat outward to remove the high SiO gas volatility region, while still holding onto the zirconia skeleton mechanically by capillary forces, to form a “solid pillars, liquid roof ” scale architecture and maintain barrier function. Basic assessment of the oxygen carriers in the borosilicate liquid in oxygen‐rich condition is performed using first‐principles calculations. It is estimated from entropy and mobility arguments that above a critical temperature TC∼1500°C, the dominant oxygen carriers should be network defects, such as peroxyl linkage or oxygen‐deficient centers, instead of molecular O2* as in the Deal–Grove model. These network defects will lead to sublinear dependence of the oxidation rate with external oxygen partial pressure. The present work suggests that there could be significant room in improving the high‐temperature oxidation resistance by refining the oxide scale microstructure as well as controlling the glass chemistry.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1551-2916.2008.02319.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Applied sciences ; Building materials. Ceramics. Glasses ; Ceramic industries ; Cermets, ceramic and refractory composites ; Chemical industry and chemicals ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Other materials ; Physics ; Specific materials ; Structural ceramics ; Technical ceramics</subject><ispartof>Journal of the American Ceramic Society, 2008-05, Vol.91 (5), p.1475-1480</ispartof><rights>2008 The American Ceramic Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1551-2916.2008.02319.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1551-2916.2008.02319.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23910,23911,25119,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20353444$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Ju</creatorcontrib><creatorcontrib>Lenosky, Thomas J.</creatorcontrib><creatorcontrib>Först, Clemens J.</creatorcontrib><creatorcontrib>Yip, Sidney</creatorcontrib><title>Thermochemical and Mechanical Stabilities of the Oxide Scale of ZrB2+SiC and Oxygen Transport Mechanisms</title><title>Journal of the American Ceramic Society</title><description>Refractory diboride with silicon carbide additive has a unique oxide scale microstructure with two condensed oxide phases (solid+liquid), and demonstrates oxidation resistance superior to either monolithic diboride or silicon carbide. We rationalize that this is because the silica‐rich liquid phase can retreat outward to remove the high SiO gas volatility region, while still holding onto the zirconia skeleton mechanically by capillary forces, to form a “solid pillars, liquid roof ” scale architecture and maintain barrier function. Basic assessment of the oxygen carriers in the borosilicate liquid in oxygen‐rich condition is performed using first‐principles calculations. It is estimated from entropy and mobility arguments that above a critical temperature TC∼1500°C, the dominant oxygen carriers should be network defects, such as peroxyl linkage or oxygen‐deficient centers, instead of molecular O2* as in the Deal–Grove model. These network defects will lead to sublinear dependence of the oxidation rate with external oxygen partial pressure. The present work suggests that there could be significant room in improving the high‐temperature oxidation resistance by refining the oxide scale microstructure as well as controlling the glass chemistry.</description><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Cermets, ceramic and refractory composites</subject><subject>Chemical industry and chemicals</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Other materials</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Structural ceramics</subject><subject>Technical ceramics</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEuXxD9nABiV4_EjiFYKqFBC0Qq2ExMZyHIe45FHiINK_J2mhXow9vtdH44uQBziAfl2vAuAcfCIgDAjGcYAJBRF0B2i0Fw7RCGNM_Cgm-BidOLfqWxAxG6F8mZumrHVuSqtV4akq9V6MzlW1bRetSmxhW2ucV2demxtv3tnUeIteNcPVe3NHrhZ2vH057zYfpvKWjarcum7af5Qr3Rk6ylThzPnffoqW95Pl-MF_nk8fx7fPviUCC58khiYs5SaMIQGhNRM8ElwnLEkVB65CGumkL2lEgIBmOs0EUWGaMSxCoKfocoddN_XXt3GtLK3TpihUZepvJykngFk8GC_-jMr1f8n6kbV1ct3YUjUbSTDllDHW-252vh9bmM1eByyH-OVKDinLIWU5xC-38ctOPt2OJ9tzT_B3BOta0-0JqvmUYUQjLt9mUwmzMIRpPJOv9BdXyInN</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Li, Ju</creator><creator>Lenosky, Thomas J.</creator><creator>Först, Clemens J.</creator><creator>Yip, Sidney</creator><general>Blackwell Publishing Inc</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>200805</creationdate><title>Thermochemical and Mechanical Stabilities of the Oxide Scale of ZrB2+SiC and Oxygen Transport Mechanisms</title><author>Li, Ju ; Lenosky, Thomas J. ; Först, Clemens J. ; Yip, Sidney</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2909-2be3b4d5e681b19cc495795cb4bda515a637cb637d72121c4cdf92a6df409613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Cermets, ceramic and refractory composites</topic><topic>Chemical industry and chemicals</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Other materials</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Structural ceramics</topic><topic>Technical ceramics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ju</creatorcontrib><creatorcontrib>Lenosky, Thomas J.</creatorcontrib><creatorcontrib>Först, Clemens J.</creatorcontrib><creatorcontrib>Yip, Sidney</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ju</au><au>Lenosky, Thomas J.</au><au>Först, Clemens J.</au><au>Yip, Sidney</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermochemical and Mechanical Stabilities of the Oxide Scale of ZrB2+SiC and Oxygen Transport Mechanisms</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2008-05</date><risdate>2008</risdate><volume>91</volume><issue>5</issue><spage>1475</spage><epage>1480</epage><pages>1475-1480</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Refractory diboride with silicon carbide additive has a unique oxide scale microstructure with two condensed oxide phases (solid+liquid), and demonstrates oxidation resistance superior to either monolithic diboride or silicon carbide. We rationalize that this is because the silica‐rich liquid phase can retreat outward to remove the high SiO gas volatility region, while still holding onto the zirconia skeleton mechanically by capillary forces, to form a “solid pillars, liquid roof ” scale architecture and maintain barrier function. Basic assessment of the oxygen carriers in the borosilicate liquid in oxygen‐rich condition is performed using first‐principles calculations. It is estimated from entropy and mobility arguments that above a critical temperature TC∼1500°C, the dominant oxygen carriers should be network defects, such as peroxyl linkage or oxygen‐deficient centers, instead of molecular O2* as in the Deal–Grove model. These network defects will lead to sublinear dependence of the oxidation rate with external oxygen partial pressure. The present work suggests that there could be significant room in improving the high‐temperature oxidation resistance by refining the oxide scale microstructure as well as controlling the glass chemistry.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1551-2916.2008.02319.x</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2008-05, Vol.91 (5), p.1475-1480
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_35210481
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Building materials. Ceramics. Glasses
Ceramic industries
Cermets, ceramic and refractory composites
Chemical industry and chemicals
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials science
Other materials
Physics
Specific materials
Structural ceramics
Technical ceramics
title Thermochemical and Mechanical Stabilities of the Oxide Scale of ZrB2+SiC and Oxygen Transport Mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermochemical%20and%20Mechanical%20Stabilities%20of%20the%20Oxide%20Scale%20of%20ZrB2+SiC%20and%20Oxygen%20Transport%20Mechanisms&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Li,%20Ju&rft.date=2008-05&rft.volume=91&rft.issue=5&rft.spage=1475&rft.epage=1480&rft.pages=1475-1480&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1551-2916.2008.02319.x&rft_dat=%3Cproquest_pasca%3E35210481%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35210481&rft_id=info:pmid/&rfr_iscdi=true