Thermal stability of metastable austenite in rapidly solidified chromium–molybdenum–vanadium tool steel powder

Thermal stability of metastable austenite in a Cr–Mo–V tool steel of ledeburite type was investigated by tempering rapidly solidified (RS) particles at temperatures from 100 up to 700°C and by continuous heating during differential thermal analysis. A rapid increase in microhardness was observed aft...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2004-07, Vol.375-377, p.581-584
Hauptverfasser: Grgac, P., Moravcik, R., Kusy, M., Toth, I., Miglierini, M., Illekova, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 584
container_issue
container_start_page 581
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 375-377
creator Grgac, P.
Moravcik, R.
Kusy, M.
Toth, I.
Miglierini, M.
Illekova, E.
description Thermal stability of metastable austenite in a Cr–Mo–V tool steel of ledeburite type was investigated by tempering rapidly solidified (RS) particles at temperatures from 100 up to 700°C and by continuous heating during differential thermal analysis. A rapid increase in microhardness was observed after the tempering at temperatures over 400°C. According to Mössbauer effect measurements, only non-magnetic phases were observed in the RS particles after atomization, as well as after the tempering at temperatures below 540°C. Above this temperature, the metastable austenite gradually transformed into martensite during cooling from the tempering temperature. The secondary hardening peak corresponding to 1220HV appears at 600°C. This temperature is higher than the temperature of the secondary hardening peak for this steel after conventional heat treatment. The thermal stability of austenite was determined and the mechanisms of phase transformations responsible for the achievement of secondary hardness in this steel following rapid solidification are described.
doi_str_mv 10.1016/j.msea.2003.10.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35209656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092150930301030X</els_id><sourcerecordid>28425387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-e2cdddbe9c785028615666f651911f59ae969b555c7de5b4f36e76b1f757c3d93</originalsourceid><addsrcrecordid>eNqNkT1OAzEUhC0EEiFwASpXdBvsdeyNJRoU8SdFogm15bXfKo6862A7Qem4AzfkJOwSaqB6eqNvpphB6JKSCSVUXK8nbQI9KQlhvTAhTByhEZ1VrJhKJo7RiMiSFpxIdorOUloTQuiU8BGKyxXEVnucsq6dd3mPQ4NbyHoQPGC9TRk6lwG7Dke9cdbvcQreWdc4sNisYmjdtv18_2iD39cWuu9npzttex3nEIZ0AI834c1CPEcnjfYJLn7uGL3c3y3nj8Xi-eFpfrsoDJM0F1Aaa20N0lQzTsqZoFwI0QhOJaUNlxqkkDXn3FQWeD1tmIBK1LSpeGWYlWyMrg65mxhet5Cyal0y4L3uIGyTYrwkUnDxJ1jOpoL0Xf4HLDnryTEqD6CJIaUIjdpE1-q4V5SoYTC1VsNgahhs0PrBetPNwQR9KTsHUSXjoDNgXQSTlQ3uN_sXlkGjdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28425387</pqid></control><display><type>article</type><title>Thermal stability of metastable austenite in rapidly solidified chromium–molybdenum–vanadium tool steel powder</title><source>Elsevier ScienceDirect Journals</source><creator>Grgac, P. ; Moravcik, R. ; Kusy, M. ; Toth, I. ; Miglierini, M. ; Illekova, E.</creator><creatorcontrib>Grgac, P. ; Moravcik, R. ; Kusy, M. ; Toth, I. ; Miglierini, M. ; Illekova, E.</creatorcontrib><description>Thermal stability of metastable austenite in a Cr–Mo–V tool steel of ledeburite type was investigated by tempering rapidly solidified (RS) particles at temperatures from 100 up to 700°C and by continuous heating during differential thermal analysis. A rapid increase in microhardness was observed after the tempering at temperatures over 400°C. According to Mössbauer effect measurements, only non-magnetic phases were observed in the RS particles after atomization, as well as after the tempering at temperatures below 540°C. Above this temperature, the metastable austenite gradually transformed into martensite during cooling from the tempering temperature. The secondary hardening peak corresponding to 1220HV appears at 600°C. This temperature is higher than the temperature of the secondary hardening peak for this steel after conventional heat treatment. The thermal stability of austenite was determined and the mechanisms of phase transformations responsible for the achievement of secondary hardness in this steel following rapid solidification are described.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2003.10.036</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Atomization ; Austenite ; Rapid solidification ; Thermal stability ; Tool steel</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2004-07, Vol.375-377, p.581-584</ispartof><rights>2003 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-e2cdddbe9c785028615666f651911f59ae969b555c7de5b4f36e76b1f757c3d93</citedby><cites>FETCH-LOGICAL-c391t-e2cdddbe9c785028615666f651911f59ae969b555c7de5b4f36e76b1f757c3d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S092150930301030X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65308</link.rule.ids></links><search><creatorcontrib>Grgac, P.</creatorcontrib><creatorcontrib>Moravcik, R.</creatorcontrib><creatorcontrib>Kusy, M.</creatorcontrib><creatorcontrib>Toth, I.</creatorcontrib><creatorcontrib>Miglierini, M.</creatorcontrib><creatorcontrib>Illekova, E.</creatorcontrib><title>Thermal stability of metastable austenite in rapidly solidified chromium–molybdenum–vanadium tool steel powder</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Thermal stability of metastable austenite in a Cr–Mo–V tool steel of ledeburite type was investigated by tempering rapidly solidified (RS) particles at temperatures from 100 up to 700°C and by continuous heating during differential thermal analysis. A rapid increase in microhardness was observed after the tempering at temperatures over 400°C. According to Mössbauer effect measurements, only non-magnetic phases were observed in the RS particles after atomization, as well as after the tempering at temperatures below 540°C. Above this temperature, the metastable austenite gradually transformed into martensite during cooling from the tempering temperature. The secondary hardening peak corresponding to 1220HV appears at 600°C. This temperature is higher than the temperature of the secondary hardening peak for this steel after conventional heat treatment. The thermal stability of austenite was determined and the mechanisms of phase transformations responsible for the achievement of secondary hardness in this steel following rapid solidification are described.</description><subject>Atomization</subject><subject>Austenite</subject><subject>Rapid solidification</subject><subject>Thermal stability</subject><subject>Tool steel</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkT1OAzEUhC0EEiFwASpXdBvsdeyNJRoU8SdFogm15bXfKo6862A7Qem4AzfkJOwSaqB6eqNvpphB6JKSCSVUXK8nbQI9KQlhvTAhTByhEZ1VrJhKJo7RiMiSFpxIdorOUloTQuiU8BGKyxXEVnucsq6dd3mPQ4NbyHoQPGC9TRk6lwG7Dke9cdbvcQreWdc4sNisYmjdtv18_2iD39cWuu9npzttex3nEIZ0AI834c1CPEcnjfYJLn7uGL3c3y3nj8Xi-eFpfrsoDJM0F1Aaa20N0lQzTsqZoFwI0QhOJaUNlxqkkDXn3FQWeD1tmIBK1LSpeGWYlWyMrg65mxhet5Cyal0y4L3uIGyTYrwkUnDxJ1jOpoL0Xf4HLDnryTEqD6CJIaUIjdpE1-q4V5SoYTC1VsNgahhs0PrBetPNwQR9KTsHUSXjoDNgXQSTlQ3uN_sXlkGjdw</recordid><startdate>20040715</startdate><enddate>20040715</enddate><creator>Grgac, P.</creator><creator>Moravcik, R.</creator><creator>Kusy, M.</creator><creator>Toth, I.</creator><creator>Miglierini, M.</creator><creator>Illekova, E.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>7SR</scope></search><sort><creationdate>20040715</creationdate><title>Thermal stability of metastable austenite in rapidly solidified chromium–molybdenum–vanadium tool steel powder</title><author>Grgac, P. ; Moravcik, R. ; Kusy, M. ; Toth, I. ; Miglierini, M. ; Illekova, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-e2cdddbe9c785028615666f651911f59ae969b555c7de5b4f36e76b1f757c3d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Atomization</topic><topic>Austenite</topic><topic>Rapid solidification</topic><topic>Thermal stability</topic><topic>Tool steel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grgac, P.</creatorcontrib><creatorcontrib>Moravcik, R.</creatorcontrib><creatorcontrib>Kusy, M.</creatorcontrib><creatorcontrib>Toth, I.</creatorcontrib><creatorcontrib>Miglierini, M.</creatorcontrib><creatorcontrib>Illekova, E.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Engineered Materials Abstracts</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grgac, P.</au><au>Moravcik, R.</au><au>Kusy, M.</au><au>Toth, I.</au><au>Miglierini, M.</au><au>Illekova, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stability of metastable austenite in rapidly solidified chromium–molybdenum–vanadium tool steel powder</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2004-07-15</date><risdate>2004</risdate><volume>375-377</volume><spage>581</spage><epage>584</epage><pages>581-584</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Thermal stability of metastable austenite in a Cr–Mo–V tool steel of ledeburite type was investigated by tempering rapidly solidified (RS) particles at temperatures from 100 up to 700°C and by continuous heating during differential thermal analysis. A rapid increase in microhardness was observed after the tempering at temperatures over 400°C. According to Mössbauer effect measurements, only non-magnetic phases were observed in the RS particles after atomization, as well as after the tempering at temperatures below 540°C. Above this temperature, the metastable austenite gradually transformed into martensite during cooling from the tempering temperature. The secondary hardening peak corresponding to 1220HV appears at 600°C. This temperature is higher than the temperature of the secondary hardening peak for this steel after conventional heat treatment. The thermal stability of austenite was determined and the mechanisms of phase transformations responsible for the achievement of secondary hardness in this steel following rapid solidification are described.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2003.10.036</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2004-07, Vol.375-377, p.581-584
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_35209656
source Elsevier ScienceDirect Journals
subjects Atomization
Austenite
Rapid solidification
Thermal stability
Tool steel
title Thermal stability of metastable austenite in rapidly solidified chromium–molybdenum–vanadium tool steel powder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stability%20of%20metastable%20austenite%20in%20rapidly%20solidified%20chromium%E2%80%93molybdenum%E2%80%93vanadium%20tool%20steel%20powder&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Grgac,%20P.&rft.date=2004-07-15&rft.volume=375-377&rft.spage=581&rft.epage=584&rft.pages=581-584&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2003.10.036&rft_dat=%3Cproquest_cross%3E28425387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28425387&rft_id=info:pmid/&rft_els_id=S092150930301030X&rfr_iscdi=true