Sinogram recovery for sparse angle tomography using a sinusoidal Hough transform

In hard-field tomography, where access restrictions forbid continuous scanning around the subject, the measurements represent an under-sampled forward transform resulting in a sparse-angle sinogram and a reconstructed image with substantial artefacts. We introduce a method whereby the under-sampled...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2008-09, Vol.19 (9), p.094015-094015 (11)
Hauptverfasser: Constantino, E P A, Ozanyan, K B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 094015 (11)
container_issue 9
container_start_page 094015
container_title Measurement science & technology
container_volume 19
creator Constantino, E P A
Ozanyan, K B
description In hard-field tomography, where access restrictions forbid continuous scanning around the subject, the measurements represent an under-sampled forward transform resulting in a sparse-angle sinogram and a reconstructed image with substantial artefacts. We introduce a method whereby the under-sampled sinogram is treated as a pixellated image, to which an image analysis technique, the Hough transform, is applied. The analytical description is obtained of sinusoidal data patterns (centre of mass, spatial support and total mass), corresponding to the major objects' distribution in the imaged subject. Furthermore, the sampling of the sinogram is recovered to a degree required for standard algorithms for data inversion. Results are presented from the implementation of the proposed algorithm on simulated phantoms, as well as experimental data from guided-path tomography. It is shown that the algorithm is capable of recovering a complete sinogram from as little as 32 measurements at four angular projections with good centre-of-mass estimates and boundary definition, together with substantial suppression of errors in subsequent image reconstruction.
doi_str_mv 10.1088/0957-0233/19/9/094015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35174599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35174599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-5fc114e687173172efe05ab15badb5108f4e3065a914127a2acb7880c23050c13</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK4-gpCTJ-vONE3THGVRV1hQUM8hzabdStvUpBX27W2peFE8_Qx83wzzE3KJcIOQZSuQXEQQM7ZCuZLjmADyI7JAlmKUcsBjsvhhTslZCO8AIEDKBXl-qVpXet1Qb437tP5AC-dp6LQPluq2rC3tXTMh3f5Ah1C1JdV0jCG4aqdrunFDuae9120YzeacnBS6DvbiO5fk7f7udb2Jtk8Pj-vbbWRYGvcRLwxiYtNMoGAoYltY4DpHnutdzse3isQySLmWmGAsdKxNLrIMTMyAg0G2JFfz3s67j8GGXjVVMLaudWvdEBTjKBIu5QjyGTTeheBtoTpfNdofFIKa-lNTN2rqRqFUUs39jd717FWu-1H-RFW3K0YcfuP_X_gC1v1_OQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35174599</pqid></control><display><type>article</type><title>Sinogram recovery for sparse angle tomography using a sinusoidal Hough transform</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Constantino, E P A ; Ozanyan, K B</creator><creatorcontrib>Constantino, E P A ; Ozanyan, K B</creatorcontrib><description>In hard-field tomography, where access restrictions forbid continuous scanning around the subject, the measurements represent an under-sampled forward transform resulting in a sparse-angle sinogram and a reconstructed image with substantial artefacts. We introduce a method whereby the under-sampled sinogram is treated as a pixellated image, to which an image analysis technique, the Hough transform, is applied. The analytical description is obtained of sinusoidal data patterns (centre of mass, spatial support and total mass), corresponding to the major objects' distribution in the imaged subject. Furthermore, the sampling of the sinogram is recovered to a degree required for standard algorithms for data inversion. Results are presented from the implementation of the proposed algorithm on simulated phantoms, as well as experimental data from guided-path tomography. It is shown that the algorithm is capable of recovering a complete sinogram from as little as 32 measurements at four angular projections with good centre-of-mass estimates and boundary definition, together with substantial suppression of errors in subsequent image reconstruction.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/0957-0233/19/9/094015</identifier><language>eng</language><publisher>IOP Publishing</publisher><ispartof>Measurement science &amp; technology, 2008-09, Vol.19 (9), p.094015-094015 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-5fc114e687173172efe05ab15badb5108f4e3065a914127a2acb7880c23050c13</citedby><cites>FETCH-LOGICAL-c362t-5fc114e687173172efe05ab15badb5108f4e3065a914127a2acb7880c23050c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-0233/19/9/094015/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27907,27908,53813,53893</link.rule.ids></links><search><creatorcontrib>Constantino, E P A</creatorcontrib><creatorcontrib>Ozanyan, K B</creatorcontrib><title>Sinogram recovery for sparse angle tomography using a sinusoidal Hough transform</title><title>Measurement science &amp; technology</title><description>In hard-field tomography, where access restrictions forbid continuous scanning around the subject, the measurements represent an under-sampled forward transform resulting in a sparse-angle sinogram and a reconstructed image with substantial artefacts. We introduce a method whereby the under-sampled sinogram is treated as a pixellated image, to which an image analysis technique, the Hough transform, is applied. The analytical description is obtained of sinusoidal data patterns (centre of mass, spatial support and total mass), corresponding to the major objects' distribution in the imaged subject. Furthermore, the sampling of the sinogram is recovered to a degree required for standard algorithms for data inversion. Results are presented from the implementation of the proposed algorithm on simulated phantoms, as well as experimental data from guided-path tomography. It is shown that the algorithm is capable of recovering a complete sinogram from as little as 32 measurements at four angular projections with good centre-of-mass estimates and boundary definition, together with substantial suppression of errors in subsequent image reconstruction.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK4-gpCTJ-vONE3THGVRV1hQUM8hzabdStvUpBX27W2peFE8_Qx83wzzE3KJcIOQZSuQXEQQM7ZCuZLjmADyI7JAlmKUcsBjsvhhTslZCO8AIEDKBXl-qVpXet1Qb437tP5AC-dp6LQPluq2rC3tXTMh3f5Ah1C1JdV0jCG4aqdrunFDuae9120YzeacnBS6DvbiO5fk7f7udb2Jtk8Pj-vbbWRYGvcRLwxiYtNMoGAoYltY4DpHnutdzse3isQySLmWmGAsdKxNLrIMTMyAg0G2JFfz3s67j8GGXjVVMLaudWvdEBTjKBIu5QjyGTTeheBtoTpfNdofFIKa-lNTN2rqRqFUUs39jd717FWu-1H-RFW3K0YcfuP_X_gC1v1_OQ</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Constantino, E P A</creator><creator>Ozanyan, K B</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080901</creationdate><title>Sinogram recovery for sparse angle tomography using a sinusoidal Hough transform</title><author>Constantino, E P A ; Ozanyan, K B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-5fc114e687173172efe05ab15badb5108f4e3065a914127a2acb7880c23050c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantino, E P A</creatorcontrib><creatorcontrib>Ozanyan, K B</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantino, E P A</au><au>Ozanyan, K B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sinogram recovery for sparse angle tomography using a sinusoidal Hough transform</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2008-09-01</date><risdate>2008</risdate><volume>19</volume><issue>9</issue><spage>094015</spage><epage>094015 (11)</epage><pages>094015-094015 (11)</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>In hard-field tomography, where access restrictions forbid continuous scanning around the subject, the measurements represent an under-sampled forward transform resulting in a sparse-angle sinogram and a reconstructed image with substantial artefacts. We introduce a method whereby the under-sampled sinogram is treated as a pixellated image, to which an image analysis technique, the Hough transform, is applied. The analytical description is obtained of sinusoidal data patterns (centre of mass, spatial support and total mass), corresponding to the major objects' distribution in the imaged subject. Furthermore, the sampling of the sinogram is recovered to a degree required for standard algorithms for data inversion. Results are presented from the implementation of the proposed algorithm on simulated phantoms, as well as experimental data from guided-path tomography. It is shown that the algorithm is capable of recovering a complete sinogram from as little as 32 measurements at four angular projections with good centre-of-mass estimates and boundary definition, together with substantial suppression of errors in subsequent image reconstruction.</abstract><pub>IOP Publishing</pub><doi>10.1088/0957-0233/19/9/094015</doi></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2008-09, Vol.19 (9), p.094015-094015 (11)
issn 0957-0233
1361-6501
language eng
recordid cdi_proquest_miscellaneous_35174599
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Sinogram recovery for sparse angle tomography using a sinusoidal Hough transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sinogram%20recovery%20for%20sparse%20angle%20tomography%20using%20a%20sinusoidal%20Hough%20transform&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Constantino,%20E%20P%20A&rft.date=2008-09-01&rft.volume=19&rft.issue=9&rft.spage=094015&rft.epage=094015%20(11)&rft.pages=094015-094015%20(11)&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/0957-0233/19/9/094015&rft_dat=%3Cproquest_cross%3E35174599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35174599&rft_id=info:pmid/&rfr_iscdi=true