Effects of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites
Carbon-fiber (CF)-reinforced aluminum-matrix composites were prepared by spreading fibers and squeeze casting. The interface structure of CP/AI composites was examined using high-resolution transmission electron microscopy (HRTEM) and electron spectroscopy for chemical analysis (ESCA). Aluminum carb...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2004-07, Vol.35 (7), p.2153-2160 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2160 |
---|---|
container_issue | 7 |
container_start_page | 2153 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 35 |
creator | LI, Sheng-Han CHAO, Chuen-Guang |
description | Carbon-fiber (CF)-reinforced aluminum-matrix composites were prepared by spreading fibers and squeeze casting. The interface structure of CP/AI composites was examined using high-resolution transmission electron microscopy (HRTEM) and electron spectroscopy for chemical analysis (ESCA). Aluminum carbide (Al^sub 4^C^sub 4^) interfacial reaction products were observed to nucleate heterogeneously from carbon fibers and to grow toward the aluminum matrix in the form of lath-like crystals after heat treatment. The growth of aluminum carbide was anisotropic, since it was faster along the a- and b-axes of the basal plane than along the c-axis. Both the tensile strength and the elongation of composites decline with an increased duration of heat treatment. The results of ESCA revealed that approximately 1 pct of carbide enhanced interface bonding. However, increasing the content of brittle carbides to over 3 pct after heat treatment degraded the mechanical properties of composites. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s11661-004-0163-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35170043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35170043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-c45b1ad2a456de1c3ec9ca7f912baf473debdd0b35eb269a5fb0a3e3d0e584ae3</originalsourceid><addsrcrecordid>eNpdUUtLxjAQLKLg8wd4K4Leotluk9qjiC8QvOg5bNMNRtrmM2lB_fVGP0HxsrssM7PDTlEcgjwFKZuzBKA1CClrIUGj-NgodkDVKKCt5WaeZYNC6Qq3i92UXqSU0KLeKdKVc2znVAZXWopdmErnO45nF0Ppp5mjI8tl3o5sn2nyloZyFcOK4-z5D0t8s0RkP7kQLfclDcvop2UUI83Rv5U2jKuQ_Mxpv9hyNCQ--Ol7xdP11ePlrbh_uLm7vLgXtsZ6zlV1QH1FtdI9g0W2raXGtVB15OoGe-76XnaouKt0S8p1kpCxl6zOa2LcK07Wutnw68JpNqNPloeBJg5LMqigyQ_DDDz6B3wJS5yyN1MBNoigmwyCNcjGkFJkZ1bRjxTfDUjzlYFZZ2CypPnKwHxkzvGPMKX8ORdpsj79ElWrtMwHPgGJRon-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213733167</pqid></control><display><type>article</type><title>Effects of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites</title><source>SpringerLink Journals</source><creator>LI, Sheng-Han ; CHAO, Chuen-Guang</creator><creatorcontrib>LI, Sheng-Han ; CHAO, Chuen-Guang</creatorcontrib><description>Carbon-fiber (CF)-reinforced aluminum-matrix composites were prepared by spreading fibers and squeeze casting. The interface structure of CP/AI composites was examined using high-resolution transmission electron microscopy (HRTEM) and electron spectroscopy for chemical analysis (ESCA). Aluminum carbide (Al^sub 4^C^sub 4^) interfacial reaction products were observed to nucleate heterogeneously from carbon fibers and to grow toward the aluminum matrix in the form of lath-like crystals after heat treatment. The growth of aluminum carbide was anisotropic, since it was faster along the a- and b-axes of the basal plane than along the c-axis. Both the tensile strength and the elongation of composites decline with an increased duration of heat treatment. The results of ESCA revealed that approximately 1 pct of carbide enhanced interface bonding. However, increasing the content of brittle carbides to over 3 pct after heat treatment degraded the mechanical properties of composites. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-004-0163-z</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Aluminum ; Carbon fibers ; Casting ; Cross-disciplinary physics: materials science; rheology ; Dispersion-, fiber-, and platelet-reinforced metal-based composites ; Exact sciences and technology ; Heat treating ; Materials science ; Mechanical properties ; Metal matrix composites ; Microstructure ; Other materials ; Physics ; Specific materials</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2004-07, Vol.35 (7), p.2153-2160</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society Jul 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-c45b1ad2a456de1c3ec9ca7f912baf473debdd0b35eb269a5fb0a3e3d0e584ae3</citedby><cites>FETCH-LOGICAL-c434t-c45b1ad2a456de1c3ec9ca7f912baf473debdd0b35eb269a5fb0a3e3d0e584ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15956037$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LI, Sheng-Han</creatorcontrib><creatorcontrib>CHAO, Chuen-Guang</creatorcontrib><title>Effects of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><description>Carbon-fiber (CF)-reinforced aluminum-matrix composites were prepared by spreading fibers and squeeze casting. The interface structure of CP/AI composites was examined using high-resolution transmission electron microscopy (HRTEM) and electron spectroscopy for chemical analysis (ESCA). Aluminum carbide (Al^sub 4^C^sub 4^) interfacial reaction products were observed to nucleate heterogeneously from carbon fibers and to grow toward the aluminum matrix in the form of lath-like crystals after heat treatment. The growth of aluminum carbide was anisotropic, since it was faster along the a- and b-axes of the basal plane than along the c-axis. Both the tensile strength and the elongation of composites decline with an increased duration of heat treatment. The results of ESCA revealed that approximately 1 pct of carbide enhanced interface bonding. However, increasing the content of brittle carbides to over 3 pct after heat treatment degraded the mechanical properties of composites. [PUBLICATION ABSTRACT]</description><subject>Aluminum</subject><subject>Carbon fibers</subject><subject>Casting</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dispersion-, fiber-, and platelet-reinforced metal-based composites</subject><subject>Exact sciences and technology</subject><subject>Heat treating</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Metal matrix composites</subject><subject>Microstructure</subject><subject>Other materials</subject><subject>Physics</subject><subject>Specific materials</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdUUtLxjAQLKLg8wd4K4Leotluk9qjiC8QvOg5bNMNRtrmM2lB_fVGP0HxsrssM7PDTlEcgjwFKZuzBKA1CClrIUGj-NgodkDVKKCt5WaeZYNC6Qq3i92UXqSU0KLeKdKVc2znVAZXWopdmErnO45nF0Ppp5mjI8tl3o5sn2nyloZyFcOK4-z5D0t8s0RkP7kQLfclDcvop2UUI83Rv5U2jKuQ_Mxpv9hyNCQ--Ol7xdP11ePlrbh_uLm7vLgXtsZ6zlV1QH1FtdI9g0W2raXGtVB15OoGe-76XnaouKt0S8p1kpCxl6zOa2LcK07Wutnw68JpNqNPloeBJg5LMqigyQ_DDDz6B3wJS5yyN1MBNoigmwyCNcjGkFJkZ1bRjxTfDUjzlYFZZ2CypPnKwHxkzvGPMKX8ORdpsj79ElWrtMwHPgGJRon-</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>LI, Sheng-Han</creator><creator>CHAO, Chuen-Guang</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QF</scope></search><sort><creationdate>20040701</creationdate><title>Effects of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites</title><author>LI, Sheng-Han ; CHAO, Chuen-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-c45b1ad2a456de1c3ec9ca7f912baf473debdd0b35eb269a5fb0a3e3d0e584ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aluminum</topic><topic>Carbon fibers</topic><topic>Casting</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dispersion-, fiber-, and platelet-reinforced metal-based composites</topic><topic>Exact sciences and technology</topic><topic>Heat treating</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Metal matrix composites</topic><topic>Microstructure</topic><topic>Other materials</topic><topic>Physics</topic><topic>Specific materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LI, Sheng-Han</creatorcontrib><creatorcontrib>CHAO, Chuen-Guang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LI, Sheng-Han</au><au>CHAO, Chuen-Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>35</volume><issue>7</issue><spage>2153</spage><epage>2160</epage><pages>2153-2160</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>Carbon-fiber (CF)-reinforced aluminum-matrix composites were prepared by spreading fibers and squeeze casting. The interface structure of CP/AI composites was examined using high-resolution transmission electron microscopy (HRTEM) and electron spectroscopy for chemical analysis (ESCA). Aluminum carbide (Al^sub 4^C^sub 4^) interfacial reaction products were observed to nucleate heterogeneously from carbon fibers and to grow toward the aluminum matrix in the form of lath-like crystals after heat treatment. The growth of aluminum carbide was anisotropic, since it was faster along the a- and b-axes of the basal plane than along the c-axis. Both the tensile strength and the elongation of composites decline with an increased duration of heat treatment. The results of ESCA revealed that approximately 1 pct of carbide enhanced interface bonding. However, increasing the content of brittle carbides to over 3 pct after heat treatment degraded the mechanical properties of composites. [PUBLICATION ABSTRACT]</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s11661-004-0163-z</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2004-07, Vol.35 (7), p.2153-2160 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_miscellaneous_35170043 |
source | SpringerLink Journals |
subjects | Aluminum Carbon fibers Casting Cross-disciplinary physics: materials science rheology Dispersion-, fiber-, and platelet-reinforced metal-based composites Exact sciences and technology Heat treating Materials science Mechanical properties Metal matrix composites Microstructure Other materials Physics Specific materials |
title | Effects of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20carbon%20fiber/Al%20interface%20on%20mechanical%20properties%20of%20carbon-fiber-reinforced%20aluminum-matrix%20composites&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=LI,%20Sheng-Han&rft.date=2004-07-01&rft.volume=35&rft.issue=7&rft.spage=2153&rft.epage=2160&rft.pages=2153-2160&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-004-0163-z&rft_dat=%3Cproquest_cross%3E35170043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213733167&rft_id=info:pmid/&rfr_iscdi=true |