Data assimilation as synchronization of truth and model: Experiments with the three-variable Lorenz system

The potential use of chaos synchronization techniques in data assimilation for numerical weather prediction models is explored by coupling a Lorenz three-variable system that represents "truth" to another that represents "the model." By adding realistic "noise" to obser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2006-09, Vol.63 (9), p.2340-2354
Hauptverfasser: YANG, Shu-Chih, BAKER, Debra, HONG LI, CORDES, Katy, HUFF, Morgan, NAGPAL, Geetika, OKEREKE, Ena, VILLAFANE, Josue, KALNAY, Eugenia, DUANE, Gregory S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2354
container_issue 9
container_start_page 2340
container_title Journal of the atmospheric sciences
container_volume 63
creator YANG, Shu-Chih
BAKER, Debra
HONG LI
CORDES, Katy
HUFF, Morgan
NAGPAL, Geetika
OKEREKE, Ena
VILLAFANE, Josue
KALNAY, Eugenia
DUANE, Gregory S
description The potential use of chaos synchronization techniques in data assimilation for numerical weather prediction models is explored by coupling a Lorenz three-variable system that represents "truth" to another that represents "the model." By adding realistic "noise" to observations of the master system, an optimal value of the coupling strength was clearly identifiable. Coupling only the y variable yielded the best results for a wide range of higher coupling strengths. Coupling along dynamically chosen directions identified by either singular or bred vectors could improve upon simpler chaos synchronization schemes. Generalized synchronization (with the parameter r of the slave system different from that of the master) could be easily achieved, as indicated by the synchronization of two identical slave systems coupled to the same master, but the slaves only provided partial information about regime changes in the master. A comparison with a standard data assimilation technique, three-dimensional variational analysis (3DVAR), demonstrated that this scheme is slightly more effective in producing an accurate analysis than the simpler synchronization scheme. Higher growth rates of bred vectors from both the master and the slave anticipated the location and size of error spikes in both 3DVAR and synchronization. With less frequent observations, synchronization using time-interpolated observational increments was competitive with 3DVAR. Adaptive synchronization, with a coupling parameter proportional to the bred vector growth rate, was successful in reducing episodes of large error growth. These results suggest that a hybrid chaos synchronization-data assimilation approach may provide an avenue to improve and extend the period for accurate weather prediction. [PUBLICATION ABSTRACT]
doi_str_mv 10.1175/JAS3739.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35155709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19338032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-dec24ef1f6b6576aea320b5cb0a817abb2a67f79b38f4621990149549e40ad8a3</originalsourceid><addsrcrecordid>eNqFkU1rHDEMhk1pods0h_6DIZBCD5Na_ppxbyHNR8tCD03Pg2ZWw3qZsbe2N2ny6-OwC4FeIhBC8qNXyGLsE_AzgEZ__Xn-WzbSnsEbtgAteM2VsW_ZgnMhamVF-559SGnDi4kGFmzzHTNWmJKb3YTZBV-SKj34YR2Dd4_7UhirHHd5XaFfVXNY0fStuvy3pehm8jlV96685TUVj0T1HUaH_UTVMkTyj0UuZZo_sncjTomOD_GI_bm6vL24qZe_rn9cnC_rQYHK9YoGoWiE0fRGNwYJpeC9HnqOLTTY9wJNMza2l-2ojABrOSirlSXFcdWiPGKf97rbGP7uKOVudmmgaUJPYZc6qUHrhttXQQFlsjbmVRCslC2XooAn_4GbsIu-bNsJaTQXRkKBvuyhIYaUIo3dtvwjxocOePd8xO5wxO6ZPT0IYhpwGiP6waWXhhYEcKPlE5Nxm_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236502631</pqid></control><display><type>article</type><title>Data assimilation as synchronization of truth and model: Experiments with the three-variable Lorenz system</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>YANG, Shu-Chih ; BAKER, Debra ; HONG LI ; CORDES, Katy ; HUFF, Morgan ; NAGPAL, Geetika ; OKEREKE, Ena ; VILLAFANE, Josue ; KALNAY, Eugenia ; DUANE, Gregory S</creator><creatorcontrib>YANG, Shu-Chih ; BAKER, Debra ; HONG LI ; CORDES, Katy ; HUFF, Morgan ; NAGPAL, Geetika ; OKEREKE, Ena ; VILLAFANE, Josue ; KALNAY, Eugenia ; DUANE, Gregory S</creatorcontrib><description>The potential use of chaos synchronization techniques in data assimilation for numerical weather prediction models is explored by coupling a Lorenz three-variable system that represents "truth" to another that represents "the model." By adding realistic "noise" to observations of the master system, an optimal value of the coupling strength was clearly identifiable. Coupling only the y variable yielded the best results for a wide range of higher coupling strengths. Coupling along dynamically chosen directions identified by either singular or bred vectors could improve upon simpler chaos synchronization schemes. Generalized synchronization (with the parameter r of the slave system different from that of the master) could be easily achieved, as indicated by the synchronization of two identical slave systems coupled to the same master, but the slaves only provided partial information about regime changes in the master. A comparison with a standard data assimilation technique, three-dimensional variational analysis (3DVAR), demonstrated that this scheme is slightly more effective in producing an accurate analysis than the simpler synchronization scheme. Higher growth rates of bred vectors from both the master and the slave anticipated the location and size of error spikes in both 3DVAR and synchronization. With less frequent observations, synchronization using time-interpolated observational increments was competitive with 3DVAR. Adaptive synchronization, with a coupling parameter proportional to the bred vector growth rate, was successful in reducing episodes of large error growth. These results suggest that a hybrid chaos synchronization-data assimilation approach may provide an avenue to improve and extend the period for accurate weather prediction. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS3739.1</identifier><identifier>CODEN: JAHSAK</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Atmosphere ; Atmospheric models ; Data assimilation ; Data collection ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Meteorology ; Prediction models ; Studies ; Variables ; Weather analysis and prediction ; Weather forecasting</subject><ispartof>Journal of the atmospheric sciences, 2006-09, Vol.63 (9), p.2340-2354</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Meteorological Society Sep 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-dec24ef1f6b6576aea320b5cb0a817abb2a67f79b38f4621990149549e40ad8a3</citedby><cites>FETCH-LOGICAL-c414t-dec24ef1f6b6576aea320b5cb0a817abb2a67f79b38f4621990149549e40ad8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3667,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18121065$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>YANG, Shu-Chih</creatorcontrib><creatorcontrib>BAKER, Debra</creatorcontrib><creatorcontrib>HONG LI</creatorcontrib><creatorcontrib>CORDES, Katy</creatorcontrib><creatorcontrib>HUFF, Morgan</creatorcontrib><creatorcontrib>NAGPAL, Geetika</creatorcontrib><creatorcontrib>OKEREKE, Ena</creatorcontrib><creatorcontrib>VILLAFANE, Josue</creatorcontrib><creatorcontrib>KALNAY, Eugenia</creatorcontrib><creatorcontrib>DUANE, Gregory S</creatorcontrib><title>Data assimilation as synchronization of truth and model: Experiments with the three-variable Lorenz system</title><title>Journal of the atmospheric sciences</title><description>The potential use of chaos synchronization techniques in data assimilation for numerical weather prediction models is explored by coupling a Lorenz three-variable system that represents "truth" to another that represents "the model." By adding realistic "noise" to observations of the master system, an optimal value of the coupling strength was clearly identifiable. Coupling only the y variable yielded the best results for a wide range of higher coupling strengths. Coupling along dynamically chosen directions identified by either singular or bred vectors could improve upon simpler chaos synchronization schemes. Generalized synchronization (with the parameter r of the slave system different from that of the master) could be easily achieved, as indicated by the synchronization of two identical slave systems coupled to the same master, but the slaves only provided partial information about regime changes in the master. A comparison with a standard data assimilation technique, three-dimensional variational analysis (3DVAR), demonstrated that this scheme is slightly more effective in producing an accurate analysis than the simpler synchronization scheme. Higher growth rates of bred vectors from both the master and the slave anticipated the location and size of error spikes in both 3DVAR and synchronization. With less frequent observations, synchronization using time-interpolated observational increments was competitive with 3DVAR. Adaptive synchronization, with a coupling parameter proportional to the bred vector growth rate, was successful in reducing episodes of large error growth. These results suggest that a hybrid chaos synchronization-data assimilation approach may provide an avenue to improve and extend the period for accurate weather prediction. [PUBLICATION ABSTRACT]</description><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Meteorology</subject><subject>Prediction models</subject><subject>Studies</subject><subject>Variables</subject><subject>Weather analysis and prediction</subject><subject>Weather forecasting</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1rHDEMhk1pods0h_6DIZBCD5Na_ppxbyHNR8tCD03Pg2ZWw3qZsbe2N2ny6-OwC4FeIhBC8qNXyGLsE_AzgEZ__Xn-WzbSnsEbtgAteM2VsW_ZgnMhamVF-559SGnDi4kGFmzzHTNWmJKb3YTZBV-SKj34YR2Dd4_7UhirHHd5XaFfVXNY0fStuvy3pehm8jlV96685TUVj0T1HUaH_UTVMkTyj0UuZZo_sncjTomOD_GI_bm6vL24qZe_rn9cnC_rQYHK9YoGoWiE0fRGNwYJpeC9HnqOLTTY9wJNMza2l-2ojABrOSirlSXFcdWiPGKf97rbGP7uKOVudmmgaUJPYZc6qUHrhttXQQFlsjbmVRCslC2XooAn_4GbsIu-bNsJaTQXRkKBvuyhIYaUIo3dtvwjxocOePd8xO5wxO6ZPT0IYhpwGiP6waWXhhYEcKPlE5Nxm_Q</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>YANG, Shu-Chih</creator><creator>BAKER, Debra</creator><creator>HONG LI</creator><creator>CORDES, Katy</creator><creator>HUFF, Morgan</creator><creator>NAGPAL, Geetika</creator><creator>OKEREKE, Ena</creator><creator>VILLAFANE, Josue</creator><creator>KALNAY, Eugenia</creator><creator>DUANE, Gregory S</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20060901</creationdate><title>Data assimilation as synchronization of truth and model: Experiments with the three-variable Lorenz system</title><author>YANG, Shu-Chih ; BAKER, Debra ; HONG LI ; CORDES, Katy ; HUFF, Morgan ; NAGPAL, Geetika ; OKEREKE, Ena ; VILLAFANE, Josue ; KALNAY, Eugenia ; DUANE, Gregory S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-dec24ef1f6b6576aea320b5cb0a817abb2a67f79b38f4621990149549e40ad8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Meteorology</topic><topic>Prediction models</topic><topic>Studies</topic><topic>Variables</topic><topic>Weather analysis and prediction</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YANG, Shu-Chih</creatorcontrib><creatorcontrib>BAKER, Debra</creatorcontrib><creatorcontrib>HONG LI</creatorcontrib><creatorcontrib>CORDES, Katy</creatorcontrib><creatorcontrib>HUFF, Morgan</creatorcontrib><creatorcontrib>NAGPAL, Geetika</creatorcontrib><creatorcontrib>OKEREKE, Ena</creatorcontrib><creatorcontrib>VILLAFANE, Josue</creatorcontrib><creatorcontrib>KALNAY, Eugenia</creatorcontrib><creatorcontrib>DUANE, Gregory S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YANG, Shu-Chih</au><au>BAKER, Debra</au><au>HONG LI</au><au>CORDES, Katy</au><au>HUFF, Morgan</au><au>NAGPAL, Geetika</au><au>OKEREKE, Ena</au><au>VILLAFANE, Josue</au><au>KALNAY, Eugenia</au><au>DUANE, Gregory S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data assimilation as synchronization of truth and model: Experiments with the three-variable Lorenz system</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>63</volume><issue>9</issue><spage>2340</spage><epage>2354</epage><pages>2340-2354</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><coden>JAHSAK</coden><abstract>The potential use of chaos synchronization techniques in data assimilation for numerical weather prediction models is explored by coupling a Lorenz three-variable system that represents "truth" to another that represents "the model." By adding realistic "noise" to observations of the master system, an optimal value of the coupling strength was clearly identifiable. Coupling only the y variable yielded the best results for a wide range of higher coupling strengths. Coupling along dynamically chosen directions identified by either singular or bred vectors could improve upon simpler chaos synchronization schemes. Generalized synchronization (with the parameter r of the slave system different from that of the master) could be easily achieved, as indicated by the synchronization of two identical slave systems coupled to the same master, but the slaves only provided partial information about regime changes in the master. A comparison with a standard data assimilation technique, three-dimensional variational analysis (3DVAR), demonstrated that this scheme is slightly more effective in producing an accurate analysis than the simpler synchronization scheme. Higher growth rates of bred vectors from both the master and the slave anticipated the location and size of error spikes in both 3DVAR and synchronization. With less frequent observations, synchronization using time-interpolated observational increments was competitive with 3DVAR. Adaptive synchronization, with a coupling parameter proportional to the bred vector growth rate, was successful in reducing episodes of large error growth. These results suggest that a hybrid chaos synchronization-data assimilation approach may provide an avenue to improve and extend the period for accurate weather prediction. [PUBLICATION ABSTRACT]</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS3739.1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2006-09, Vol.63 (9), p.2340-2354
issn 0022-4928
1520-0469
language eng
recordid cdi_proquest_miscellaneous_35155709
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Atmosphere
Atmospheric models
Data assimilation
Data collection
Earth, ocean, space
Exact sciences and technology
External geophysics
Meteorology
Prediction models
Studies
Variables
Weather analysis and prediction
Weather forecasting
title Data assimilation as synchronization of truth and model: Experiments with the three-variable Lorenz system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20assimilation%20as%20synchronization%20of%20truth%20and%20model:%20Experiments%20with%20the%20three-variable%20Lorenz%20system&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=YANG,%20Shu-Chih&rft.date=2006-09-01&rft.volume=63&rft.issue=9&rft.spage=2340&rft.epage=2354&rft.pages=2340-2354&rft.issn=0022-4928&rft.eissn=1520-0469&rft.coden=JAHSAK&rft_id=info:doi/10.1175/JAS3739.1&rft_dat=%3Cproquest_cross%3E19338032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236502631&rft_id=info:pmid/&rfr_iscdi=true