Development of intermixed zones of alumina/zirconia in thermal barrier coating systems
The mechanisms whereby intermixed zones of alumina and zirconia are formed at the interface between the metallic bond coat and the ceramic top coat (yttria-stabilized zirconia) in thermal barrier coating systems have been investigated. The results lead to the following mechanism for the formation of...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2007-04, Vol.38 (4), p.848-857 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 857 |
---|---|
container_issue | 4 |
container_start_page | 848 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 38 |
creator | STIGER, M. J YANAR, N. M JACKSON, R. W LANEY, S. J PETTIT, F. S MEIER, G. H GANDHI, A. S LEVI, C. G |
description | The mechanisms whereby intermixed zones of alumina and zirconia are formed at the interface between the metallic bond coat and the ceramic top coat (yttria-stabilized zirconia) in thermal barrier coating systems have been investigated. The results lead to the following mechanism for the formation of the zones. The predominant mechanism for intermixed zone formation involves formation of a metastable alumina polymorph (θ or γ) during TBC deposition, with a significant amount of zirconia dissolved in it. The outward growth also begins to incorporate zirconia particles, which initiates the formation of the intermixed zone. Upon thermal exposure, the metastable TGO continues to grow outward, extending the intermixed zone, and eventually transforms to the equilibrium α-Al^sub 2^O^sub 3^. The transformation to α-Al^sub 2^O^sub 3^ results in an increase in the volume fraction of zirconia in the intermixed zone as it is rejected from solution. Once the α-Al^sub 2^O^sub 3^ appears, subsequent TGO growth produces a columnar zone of the TGO without a second phase. When α-alumina was preformed on the bond coat, prior to TBC deposition, no intermixed zone was formed for Pt-modified aluminide bond coats. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s11661-007-9117-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35154033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30037251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-c5a5ca34e849e0a62fb656d36b876f335e228f2c46c9fd27d2a1d97bd20950a73</originalsourceid><addsrcrecordid>eNqFkU9LAzEQxRdRsFY_gLdF0NvaTLJJukepf6HgRb2GaTarKbtJTXbF9tOb0oLgxdM8ht97MPOy7BzINRAiJxFACCiSLCoAWYiDbAS8ZAVUJTlMmkhWcEHZcXYS45IQAhUTo-zt1nyZ1q864_rcN7l1vQmd_TZ1vvHOxO0O26GzDicbG7R3FhOU9x8JwzZfYAjWhFx77K17z-M69qaLp9lRg200Z_s5zl7v715mj8X8-eFpdjMvNBNlX2iOXCMrzbSsDEFBm4XgomZiMZWiYYwbSqcN1aXQVVNTWVOEupKLmpKKE5RsnF3tclfBfw4m9qqzUZu2RWf8EBXj6QmEsf9BQpikHBJ48Qdc-iG4dISiwCSUBHiCYAfp4GMMplGrYDsMawVEbftQuz7UVm77UCJ5LvfBGDW2TUCnbfw1TitRpn7YD69iiqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213714015</pqid></control><display><type>article</type><title>Development of intermixed zones of alumina/zirconia in thermal barrier coating systems</title><source>Springer Nature - Complete Springer Journals</source><creator>STIGER, M. J ; YANAR, N. M ; JACKSON, R. W ; LANEY, S. J ; PETTIT, F. S ; MEIER, G. H ; GANDHI, A. S ; LEVI, C. G</creator><creatorcontrib>STIGER, M. J ; YANAR, N. M ; JACKSON, R. W ; LANEY, S. J ; PETTIT, F. S ; MEIER, G. H ; GANDHI, A. S ; LEVI, C. G</creatorcontrib><description>The mechanisms whereby intermixed zones of alumina and zirconia are formed at the interface between the metallic bond coat and the ceramic top coat (yttria-stabilized zirconia) in thermal barrier coating systems have been investigated. The results lead to the following mechanism for the formation of the zones. The predominant mechanism for intermixed zone formation involves formation of a metastable alumina polymorph (θ or γ) during TBC deposition, with a significant amount of zirconia dissolved in it. The outward growth also begins to incorporate zirconia particles, which initiates the formation of the intermixed zone. Upon thermal exposure, the metastable TGO continues to grow outward, extending the intermixed zone, and eventually transforms to the equilibrium α-Al^sub 2^O^sub 3^. The transformation to α-Al^sub 2^O^sub 3^ results in an increase in the volume fraction of zirconia in the intermixed zone as it is rejected from solution. Once the α-Al^sub 2^O^sub 3^ appears, subsequent TGO growth produces a columnar zone of the TGO without a second phase. When α-alumina was preformed on the bond coat, prior to TBC deposition, no intermixed zone was formed for Pt-modified aluminide bond coats. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-007-9117-6</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Alumina ; Applied sciences ; Exact sciences and technology ; Heat treating ; Metallurgy ; Metals. Metallurgy ; Nonmetallic coatings ; Production techniques ; Surface treatment ; Transmission electron microscopy</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2007-04, Vol.38 (4), p.848-857</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society Apr 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-c5a5ca34e849e0a62fb656d36b876f335e228f2c46c9fd27d2a1d97bd20950a73</citedby><cites>FETCH-LOGICAL-c364t-c5a5ca34e849e0a62fb656d36b876f335e228f2c46c9fd27d2a1d97bd20950a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18964623$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>STIGER, M. J</creatorcontrib><creatorcontrib>YANAR, N. M</creatorcontrib><creatorcontrib>JACKSON, R. W</creatorcontrib><creatorcontrib>LANEY, S. J</creatorcontrib><creatorcontrib>PETTIT, F. S</creatorcontrib><creatorcontrib>MEIER, G. H</creatorcontrib><creatorcontrib>GANDHI, A. S</creatorcontrib><creatorcontrib>LEVI, C. G</creatorcontrib><title>Development of intermixed zones of alumina/zirconia in thermal barrier coating systems</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><description>The mechanisms whereby intermixed zones of alumina and zirconia are formed at the interface between the metallic bond coat and the ceramic top coat (yttria-stabilized zirconia) in thermal barrier coating systems have been investigated. The results lead to the following mechanism for the formation of the zones. The predominant mechanism for intermixed zone formation involves formation of a metastable alumina polymorph (θ or γ) during TBC deposition, with a significant amount of zirconia dissolved in it. The outward growth also begins to incorporate zirconia particles, which initiates the formation of the intermixed zone. Upon thermal exposure, the metastable TGO continues to grow outward, extending the intermixed zone, and eventually transforms to the equilibrium α-Al^sub 2^O^sub 3^. The transformation to α-Al^sub 2^O^sub 3^ results in an increase in the volume fraction of zirconia in the intermixed zone as it is rejected from solution. Once the α-Al^sub 2^O^sub 3^ appears, subsequent TGO growth produces a columnar zone of the TGO without a second phase. When α-alumina was preformed on the bond coat, prior to TBC deposition, no intermixed zone was formed for Pt-modified aluminide bond coats. [PUBLICATION ABSTRACT]</description><subject>Alumina</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Heat treating</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Nonmetallic coatings</subject><subject>Production techniques</subject><subject>Surface treatment</subject><subject>Transmission electron microscopy</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU9LAzEQxRdRsFY_gLdF0NvaTLJJukepf6HgRb2GaTarKbtJTXbF9tOb0oLgxdM8ht97MPOy7BzINRAiJxFACCiSLCoAWYiDbAS8ZAVUJTlMmkhWcEHZcXYS45IQAhUTo-zt1nyZ1q864_rcN7l1vQmd_TZ1vvHOxO0O26GzDicbG7R3FhOU9x8JwzZfYAjWhFx77K17z-M69qaLp9lRg200Z_s5zl7v715mj8X8-eFpdjMvNBNlX2iOXCMrzbSsDEFBm4XgomZiMZWiYYwbSqcN1aXQVVNTWVOEupKLmpKKE5RsnF3tclfBfw4m9qqzUZu2RWf8EBXj6QmEsf9BQpikHBJ48Qdc-iG4dISiwCSUBHiCYAfp4GMMplGrYDsMawVEbftQuz7UVm77UCJ5LvfBGDW2TUCnbfw1TitRpn7YD69iiqw</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>STIGER, M. J</creator><creator>YANAR, N. M</creator><creator>JACKSON, R. W</creator><creator>LANEY, S. J</creator><creator>PETTIT, F. S</creator><creator>MEIER, G. H</creator><creator>GANDHI, A. S</creator><creator>LEVI, C. G</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QF</scope></search><sort><creationdate>20070401</creationdate><title>Development of intermixed zones of alumina/zirconia in thermal barrier coating systems</title><author>STIGER, M. J ; YANAR, N. M ; JACKSON, R. W ; LANEY, S. J ; PETTIT, F. S ; MEIER, G. H ; GANDHI, A. S ; LEVI, C. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-c5a5ca34e849e0a62fb656d36b876f335e228f2c46c9fd27d2a1d97bd20950a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Alumina</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Heat treating</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Nonmetallic coatings</topic><topic>Production techniques</topic><topic>Surface treatment</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>STIGER, M. J</creatorcontrib><creatorcontrib>YANAR, N. M</creatorcontrib><creatorcontrib>JACKSON, R. W</creatorcontrib><creatorcontrib>LANEY, S. J</creatorcontrib><creatorcontrib>PETTIT, F. S</creatorcontrib><creatorcontrib>MEIER, G. H</creatorcontrib><creatorcontrib>GANDHI, A. S</creatorcontrib><creatorcontrib>LEVI, C. G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>STIGER, M. J</au><au>YANAR, N. M</au><au>JACKSON, R. W</au><au>LANEY, S. J</au><au>PETTIT, F. S</au><au>MEIER, G. H</au><au>GANDHI, A. S</au><au>LEVI, C. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of intermixed zones of alumina/zirconia in thermal barrier coating systems</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>38</volume><issue>4</issue><spage>848</spage><epage>857</epage><pages>848-857</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The mechanisms whereby intermixed zones of alumina and zirconia are formed at the interface between the metallic bond coat and the ceramic top coat (yttria-stabilized zirconia) in thermal barrier coating systems have been investigated. The results lead to the following mechanism for the formation of the zones. The predominant mechanism for intermixed zone formation involves formation of a metastable alumina polymorph (θ or γ) during TBC deposition, with a significant amount of zirconia dissolved in it. The outward growth also begins to incorporate zirconia particles, which initiates the formation of the intermixed zone. Upon thermal exposure, the metastable TGO continues to grow outward, extending the intermixed zone, and eventually transforms to the equilibrium α-Al^sub 2^O^sub 3^. The transformation to α-Al^sub 2^O^sub 3^ results in an increase in the volume fraction of zirconia in the intermixed zone as it is rejected from solution. Once the α-Al^sub 2^O^sub 3^ appears, subsequent TGO growth produces a columnar zone of the TGO without a second phase. When α-alumina was preformed on the bond coat, prior to TBC deposition, no intermixed zone was formed for Pt-modified aluminide bond coats. [PUBLICATION ABSTRACT]</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s11661-007-9117-6</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2007-04, Vol.38 (4), p.848-857 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_miscellaneous_35154033 |
source | Springer Nature - Complete Springer Journals |
subjects | Alumina Applied sciences Exact sciences and technology Heat treating Metallurgy Metals. Metallurgy Nonmetallic coatings Production techniques Surface treatment Transmission electron microscopy |
title | Development of intermixed zones of alumina/zirconia in thermal barrier coating systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20intermixed%20zones%20of%20alumina/zirconia%20in%20thermal%20barrier%20coating%20systems&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=STIGER,%20M.%20J&rft.date=2007-04-01&rft.volume=38&rft.issue=4&rft.spage=848&rft.epage=857&rft.pages=848-857&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-007-9117-6&rft_dat=%3Cproquest_cross%3E30037251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213714015&rft_id=info:pmid/&rfr_iscdi=true |