Dislocation structure behind a shock front in fcc perfect crystals: Atomistic simulation results

Large-scale molecular dynamics simulations are used to investigate the dislocation structure behind a shock front in perfect fee crystals. Shock compression in both the [left angle bracket]100[right angle bracket] and [left angle bracket]111[right angle bracket] directions induces dislocation loop f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2004-09, Vol.35 (9), p.2609-2615
Hauptverfasser: GERMANN, Timothy C, TANGUY, Döme, HOLIAN, Brad Lee, LOMDAHL, Peter S, MARESCHAL, Michel, RAVELO, Ramon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2615
container_issue 9
container_start_page 2609
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 35
creator GERMANN, Timothy C
TANGUY, Döme
HOLIAN, Brad Lee
LOMDAHL, Peter S
MARESCHAL, Michel
RAVELO, Ramon
description Large-scale molecular dynamics simulations are used to investigate the dislocation structure behind a shock front in perfect fee crystals. Shock compression in both the [left angle bracket]100[right angle bracket] and [left angle bracket]111[right angle bracket] directions induces dislocation loop formation via a sequential emission of partial dislocations, but in the ^sub (^100[right angle bracket] case, this process is arrested after the first partial, resulting in stacking-fault loops. The large mobility of the bounding partial dislocations results in a plastic wave that is always overdriven in the [left angle bracket]100[right angle bracket] direction; the leading edges of the partials are traveling with the plastic front, as in the models of Smith and Hornbogen. In contrast, both partials are emitted in [left angle bracket]111[right angle bracket] shock compression, resulting in perfect dislocation loops bounded only by thin stacking fault ribbons due to the split partial dislocations. These loops grow more slowly than the plastic shock velocity, so new loops are periodically nucleated at the plastic front, as suggested by Meyers. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s11661-004-0206-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35146884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>689475181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-b4584bc147858465b6028e6e80b5ac3e84a84fe8906124a3d81cecd1aac1d21c3</originalsourceid><addsrcrecordid>eNqFkctKBDEQRRtR8PkB7oKgu9ZUXp1xJ75hwI2uY7omjdGezphKL_x7exhBcOOqanHupYpTVcfAz4Hz5oIAjIGac1VzwU2tt6o90ErWMFN8e9p5I2tthNyt9oneOecwk2aver2J1Cf0JaaBUckjljEH1oa3OCyYZ_SW8IN1OQ2FxYF1iGwVchewMMxfVHxPl-yqpGWkEpFRXI79piwHGvtCh9VON0Hh6GceVC93t8_XD_X86f7x-mpeoxK21K3SVrUIqrHTYnRruLDBBMtb7VEGq7xVXbAzbkAoLxcWMOACvEdYCEB5UJ1telc5fY6BiptOwtD3fghpJCc1KGOt-hcUFrTQ2k7gyR_wPY15mJ5wAmQjZWP0BMEGwpyIcujcKselz18OuFubcRszbjLj1mbcOnP6U-wJfd9lP2Ck36ABbRqj5DfLao5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213733765</pqid></control><display><type>article</type><title>Dislocation structure behind a shock front in fcc perfect crystals: Atomistic simulation results</title><source>Springer journals</source><creator>GERMANN, Timothy C ; TANGUY, Döme ; HOLIAN, Brad Lee ; LOMDAHL, Peter S ; MARESCHAL, Michel ; RAVELO, Ramon</creator><creatorcontrib>GERMANN, Timothy C ; TANGUY, Döme ; HOLIAN, Brad Lee ; LOMDAHL, Peter S ; MARESCHAL, Michel ; RAVELO, Ramon</creatorcontrib><description>Large-scale molecular dynamics simulations are used to investigate the dislocation structure behind a shock front in perfect fee crystals. Shock compression in both the [left angle bracket]100[right angle bracket] and [left angle bracket]111[right angle bracket] directions induces dislocation loop formation via a sequential emission of partial dislocations, but in the ^sub (^100[right angle bracket] case, this process is arrested after the first partial, resulting in stacking-fault loops. The large mobility of the bounding partial dislocations results in a plastic wave that is always overdriven in the [left angle bracket]100[right angle bracket] direction; the leading edges of the partials are traveling with the plastic front, as in the models of Smith and Hornbogen. In contrast, both partials are emitted in [left angle bracket]111[right angle bracket] shock compression, resulting in perfect dislocation loops bounded only by thin stacking fault ribbons due to the split partial dislocations. These loops grow more slowly than the plastic shock velocity, so new loops are periodically nucleated at the plastic front, as suggested by Meyers. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-004-0206-5</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Applied sciences ; Crystal lattices ; Crystals ; Exact sciences and technology ; Metals. Metallurgy ; Molecular structure ; Plastic deformation ; Shear stress</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2004-09, Vol.35 (9), p.2609-2615</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Minerals, Metals &amp; Materials Society Sep 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-b4584bc147858465b6028e6e80b5ac3e84a84fe8906124a3d81cecd1aac1d21c3</citedby><cites>FETCH-LOGICAL-c428t-b4584bc147858465b6028e6e80b5ac3e84a84fe8906124a3d81cecd1aac1d21c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>310,311,315,782,786,791,792,23937,23938,25147,27931,27932</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16156764$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GERMANN, Timothy C</creatorcontrib><creatorcontrib>TANGUY, Döme</creatorcontrib><creatorcontrib>HOLIAN, Brad Lee</creatorcontrib><creatorcontrib>LOMDAHL, Peter S</creatorcontrib><creatorcontrib>MARESCHAL, Michel</creatorcontrib><creatorcontrib>RAVELO, Ramon</creatorcontrib><title>Dislocation structure behind a shock front in fcc perfect crystals: Atomistic simulation results</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><description>Large-scale molecular dynamics simulations are used to investigate the dislocation structure behind a shock front in perfect fee crystals. Shock compression in both the [left angle bracket]100[right angle bracket] and [left angle bracket]111[right angle bracket] directions induces dislocation loop formation via a sequential emission of partial dislocations, but in the ^sub (^100[right angle bracket] case, this process is arrested after the first partial, resulting in stacking-fault loops. The large mobility of the bounding partial dislocations results in a plastic wave that is always overdriven in the [left angle bracket]100[right angle bracket] direction; the leading edges of the partials are traveling with the plastic front, as in the models of Smith and Hornbogen. In contrast, both partials are emitted in [left angle bracket]111[right angle bracket] shock compression, resulting in perfect dislocation loops bounded only by thin stacking fault ribbons due to the split partial dislocations. These loops grow more slowly than the plastic shock velocity, so new loops are periodically nucleated at the plastic front, as suggested by Meyers. [PUBLICATION ABSTRACT]</description><subject>Applied sciences</subject><subject>Crystal lattices</subject><subject>Crystals</subject><subject>Exact sciences and technology</subject><subject>Metals. Metallurgy</subject><subject>Molecular structure</subject><subject>Plastic deformation</subject><subject>Shear stress</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkctKBDEQRRtR8PkB7oKgu9ZUXp1xJ75hwI2uY7omjdGezphKL_x7exhBcOOqanHupYpTVcfAz4Hz5oIAjIGac1VzwU2tt6o90ErWMFN8e9p5I2tthNyt9oneOecwk2aver2J1Cf0JaaBUckjljEH1oa3OCyYZ_SW8IN1OQ2FxYF1iGwVchewMMxfVHxPl-yqpGWkEpFRXI79piwHGvtCh9VON0Hh6GceVC93t8_XD_X86f7x-mpeoxK21K3SVrUIqrHTYnRruLDBBMtb7VEGq7xVXbAzbkAoLxcWMOACvEdYCEB5UJ1telc5fY6BiptOwtD3fghpJCc1KGOt-hcUFrTQ2k7gyR_wPY15mJ5wAmQjZWP0BMEGwpyIcujcKselz18OuFubcRszbjLj1mbcOnP6U-wJfd9lP2Ck36ABbRqj5DfLao5U</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>GERMANN, Timothy C</creator><creator>TANGUY, Döme</creator><creator>HOLIAN, Brad Lee</creator><creator>LOMDAHL, Peter S</creator><creator>MARESCHAL, Michel</creator><creator>RAVELO, Ramon</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7U5</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20040901</creationdate><title>Dislocation structure behind a shock front in fcc perfect crystals: Atomistic simulation results</title><author>GERMANN, Timothy C ; TANGUY, Döme ; HOLIAN, Brad Lee ; LOMDAHL, Peter S ; MARESCHAL, Michel ; RAVELO, Ramon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-b4584bc147858465b6028e6e80b5ac3e84a84fe8906124a3d81cecd1aac1d21c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Crystal lattices</topic><topic>Crystals</topic><topic>Exact sciences and technology</topic><topic>Metals. Metallurgy</topic><topic>Molecular structure</topic><topic>Plastic deformation</topic><topic>Shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GERMANN, Timothy C</creatorcontrib><creatorcontrib>TANGUY, Döme</creatorcontrib><creatorcontrib>HOLIAN, Brad Lee</creatorcontrib><creatorcontrib>LOMDAHL, Peter S</creatorcontrib><creatorcontrib>MARESCHAL, Michel</creatorcontrib><creatorcontrib>RAVELO, Ramon</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GERMANN, Timothy C</au><au>TANGUY, Döme</au><au>HOLIAN, Brad Lee</au><au>LOMDAHL, Peter S</au><au>MARESCHAL, Michel</au><au>RAVELO, Ramon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation structure behind a shock front in fcc perfect crystals: Atomistic simulation results</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>35</volume><issue>9</issue><spage>2609</spage><epage>2615</epage><pages>2609-2615</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>Large-scale molecular dynamics simulations are used to investigate the dislocation structure behind a shock front in perfect fee crystals. Shock compression in both the [left angle bracket]100[right angle bracket] and [left angle bracket]111[right angle bracket] directions induces dislocation loop formation via a sequential emission of partial dislocations, but in the ^sub (^100[right angle bracket] case, this process is arrested after the first partial, resulting in stacking-fault loops. The large mobility of the bounding partial dislocations results in a plastic wave that is always overdriven in the [left angle bracket]100[right angle bracket] direction; the leading edges of the partials are traveling with the plastic front, as in the models of Smith and Hornbogen. In contrast, both partials are emitted in [left angle bracket]111[right angle bracket] shock compression, resulting in perfect dislocation loops bounded only by thin stacking fault ribbons due to the split partial dislocations. These loops grow more slowly than the plastic shock velocity, so new loops are periodically nucleated at the plastic front, as suggested by Meyers. [PUBLICATION ABSTRACT]</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s11661-004-0206-5</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2004-09, Vol.35 (9), p.2609-2615
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_35146884
source Springer journals
subjects Applied sciences
Crystal lattices
Crystals
Exact sciences and technology
Metals. Metallurgy
Molecular structure
Plastic deformation
Shear stress
title Dislocation structure behind a shock front in fcc perfect crystals: Atomistic simulation results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T15%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20structure%20behind%20a%20shock%20front%20in%20fcc%20perfect%20crystals:%20Atomistic%20simulation%20results&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=GERMANN,%20Timothy%20C&rft.date=2004-09-01&rft.volume=35&rft.issue=9&rft.spage=2609&rft.epage=2615&rft.pages=2609-2615&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-004-0206-5&rft_dat=%3Cproquest_cross%3E689475181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213733765&rft_id=info:pmid/&rfr_iscdi=true