Correcting for Beam Spread in Acoustic Doppler Current Profiler Measurements
Spatial homogeneity assumptions inherent in the conversion of directly measured acoustic Doppler current profiler (ADCP) beam to Cartesian coordinates for the Janus configuration are investigated. These assumptions may be adequate for large-scale flows, such as tidal currents and wind-forced upwelli...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2004-09, Vol.21 (9), p.1491-1498 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1498 |
---|---|
container_issue | 9 |
container_start_page | 1491 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 21 |
creator | Marsden, R F Ingram, R G |
description | Spatial homogeneity assumptions inherent in the conversion of directly measured acoustic Doppler current profiler (ADCP) beam to Cartesian coordinates for the Janus configuration are investigated. These assumptions may be adequate for large-scale flows, such as tidal currents and wind-forced upwelling. However, for high-frequency features, such as internal solitons and turbulence, the velocity fields may vary over scales comparable to the divergence of the acoustic beams. Equations are derived for beam spreading, and it is shown that a first-order correction can be applied to improve velocity measurement accuracy. Two cases are examined. First, the effects of the spatial and temporal convolution inherent in beam spreading from the Janus configuration ADCP are applied to a model internal solitary wave. It is shown that the corrected vertical velocities have deviations of less than 2 mm s^sup -1^ for distances up to 30 m from the transducer face and are approximately 3 times more accurate than the uncorrected velocities for distance up to 20 m from the transducer face. Next, under a "frozen turbulence" hypothesis, the method is applied to processing turbulence data. It is demonstrated that the horizontal longitudinal velocity can be markedly improved. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1175/1520-0426(2004)021<1491:CFBSIA>2.0.CO;2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35141192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>698832361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-e07e192c3bb8a90f029ee7028081e24b297fe27d9f5846cb01ac6b2580e6e0ef3</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhhdRsFb_Q_Agekg7M_nYREVoo62FSoXqeUm2E0lpk7ibHPz3JlQ8ePE0MDzMx_sIMUYYIcpgjAGBCz6F1wTg3wDhPfox3iaz6XoxeaARjJLVHR2JwS95LAYgvdiFQNKpOLN2CwDoYTgQy6QyhnVTlB9OXhlnyuneWdeG041TlM5EV61tCu08VnW9Y-MkbYeXjfNqqrzoGy-c2tbwvmvac3GSpzvLFz91KN5nT2_Js7tczRfJZOlqT2LjMkjGmLSXZVEaQw4UM0ugCCJk8jOKZc4kN3EeRH6oM8BUhxkFEXDIwLk3FFeHubWpPlu2jdoXVvNul5bc3au8AH3sNvwLEpJPEIYdePkH3FatKbsnFBEFHsgYO2h-gLSprDWcq9oU-9R8KQTVu1F94qpPXPVuVOdG9W7UwY0iBSpZKfK-ARq5g-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222530791</pqid></control><display><type>article</type><title>Correcting for Beam Spread in Acoustic Doppler Current Profiler Measurements</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Marsden, R F ; Ingram, R G</creator><creatorcontrib>Marsden, R F ; Ingram, R G</creatorcontrib><description>Spatial homogeneity assumptions inherent in the conversion of directly measured acoustic Doppler current profiler (ADCP) beam to Cartesian coordinates for the Janus configuration are investigated. These assumptions may be adequate for large-scale flows, such as tidal currents and wind-forced upwelling. However, for high-frequency features, such as internal solitons and turbulence, the velocity fields may vary over scales comparable to the divergence of the acoustic beams. Equations are derived for beam spreading, and it is shown that a first-order correction can be applied to improve velocity measurement accuracy. Two cases are examined. First, the effects of the spatial and temporal convolution inherent in beam spreading from the Janus configuration ADCP are applied to a model internal solitary wave. It is shown that the corrected vertical velocities have deviations of less than 2 mm s^sup -1^ for distances up to 30 m from the transducer face and are approximately 3 times more accurate than the uncorrected velocities for distance up to 20 m from the transducer face. Next, under a "frozen turbulence" hypothesis, the method is applied to processing turbulence data. It is demonstrated that the horizontal longitudinal velocity can be markedly improved. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/1520-0426(2004)021<1491:CFBSIA>2.0.CO;2</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Doppler effect ; Doppler radar ; Internal waves ; Measurement ; Ocean currents ; Oceanography ; Solitary waves ; Tidal currents ; Turbulence ; Upwelling</subject><ispartof>Journal of atmospheric and oceanic technology, 2004-09, Vol.21 (9), p.1491-1498</ispartof><rights>Copyright American Meteorological Society Sep 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-e07e192c3bb8a90f029ee7028081e24b297fe27d9f5846cb01ac6b2580e6e0ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Marsden, R F</creatorcontrib><creatorcontrib>Ingram, R G</creatorcontrib><title>Correcting for Beam Spread in Acoustic Doppler Current Profiler Measurements</title><title>Journal of atmospheric and oceanic technology</title><description>Spatial homogeneity assumptions inherent in the conversion of directly measured acoustic Doppler current profiler (ADCP) beam to Cartesian coordinates for the Janus configuration are investigated. These assumptions may be adequate for large-scale flows, such as tidal currents and wind-forced upwelling. However, for high-frequency features, such as internal solitons and turbulence, the velocity fields may vary over scales comparable to the divergence of the acoustic beams. Equations are derived for beam spreading, and it is shown that a first-order correction can be applied to improve velocity measurement accuracy. Two cases are examined. First, the effects of the spatial and temporal convolution inherent in beam spreading from the Janus configuration ADCP are applied to a model internal solitary wave. It is shown that the corrected vertical velocities have deviations of less than 2 mm s^sup -1^ for distances up to 30 m from the transducer face and are approximately 3 times more accurate than the uncorrected velocities for distance up to 20 m from the transducer face. Next, under a "frozen turbulence" hypothesis, the method is applied to processing turbulence data. It is demonstrated that the horizontal longitudinal velocity can be markedly improved. [PUBLICATION ABSTRACT]</description><subject>Doppler effect</subject><subject>Doppler radar</subject><subject>Internal waves</subject><subject>Measurement</subject><subject>Ocean currents</subject><subject>Oceanography</subject><subject>Solitary waves</subject><subject>Tidal currents</subject><subject>Turbulence</subject><subject>Upwelling</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1Lw0AQhhdRsFb_Q_Agekg7M_nYREVoo62FSoXqeUm2E0lpk7ibHPz3JlQ8ePE0MDzMx_sIMUYYIcpgjAGBCz6F1wTg3wDhPfox3iaz6XoxeaARjJLVHR2JwS95LAYgvdiFQNKpOLN2CwDoYTgQy6QyhnVTlB9OXhlnyuneWdeG041TlM5EV61tCu08VnW9Y-MkbYeXjfNqqrzoGy-c2tbwvmvac3GSpzvLFz91KN5nT2_Js7tczRfJZOlqT2LjMkjGmLSXZVEaQw4UM0ugCCJk8jOKZc4kN3EeRH6oM8BUhxkFEXDIwLk3FFeHubWpPlu2jdoXVvNul5bc3au8AH3sNvwLEpJPEIYdePkH3FatKbsnFBEFHsgYO2h-gLSprDWcq9oU-9R8KQTVu1F94qpPXPVuVOdG9W7UwY0iBSpZKfK-ARq5g-Q</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Marsden, R F</creator><creator>Ingram, R G</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>H95</scope></search><sort><creationdate>20040901</creationdate><title>Correcting for Beam Spread in Acoustic Doppler Current Profiler Measurements</title><author>Marsden, R F ; Ingram, R G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-e07e192c3bb8a90f029ee7028081e24b297fe27d9f5846cb01ac6b2580e6e0ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Doppler effect</topic><topic>Doppler radar</topic><topic>Internal waves</topic><topic>Measurement</topic><topic>Ocean currents</topic><topic>Oceanography</topic><topic>Solitary waves</topic><topic>Tidal currents</topic><topic>Turbulence</topic><topic>Upwelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marsden, R F</creatorcontrib><creatorcontrib>Ingram, R G</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marsden, R F</au><au>Ingram, R G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correcting for Beam Spread in Acoustic Doppler Current Profiler Measurements</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>21</volume><issue>9</issue><spage>1491</spage><epage>1498</epage><pages>1491-1498</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Spatial homogeneity assumptions inherent in the conversion of directly measured acoustic Doppler current profiler (ADCP) beam to Cartesian coordinates for the Janus configuration are investigated. These assumptions may be adequate for large-scale flows, such as tidal currents and wind-forced upwelling. However, for high-frequency features, such as internal solitons and turbulence, the velocity fields may vary over scales comparable to the divergence of the acoustic beams. Equations are derived for beam spreading, and it is shown that a first-order correction can be applied to improve velocity measurement accuracy. Two cases are examined. First, the effects of the spatial and temporal convolution inherent in beam spreading from the Janus configuration ADCP are applied to a model internal solitary wave. It is shown that the corrected vertical velocities have deviations of less than 2 mm s^sup -1^ for distances up to 30 m from the transducer face and are approximately 3 times more accurate than the uncorrected velocities for distance up to 20 m from the transducer face. Next, under a "frozen turbulence" hypothesis, the method is applied to processing turbulence data. It is demonstrated that the horizontal longitudinal velocity can be markedly improved. [PUBLICATION ABSTRACT]</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0426(2004)021<1491:CFBSIA>2.0.CO;2</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2004-09, Vol.21 (9), p.1491-1498 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_proquest_miscellaneous_35141192 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Doppler effect Doppler radar Internal waves Measurement Ocean currents Oceanography Solitary waves Tidal currents Turbulence Upwelling |
title | Correcting for Beam Spread in Acoustic Doppler Current Profiler Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correcting%20for%20Beam%20Spread%20in%20Acoustic%20Doppler%20Current%20Profiler%20Measurements&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Marsden,%20R%20F&rft.date=2004-09-01&rft.volume=21&rft.issue=9&rft.spage=1491&rft.epage=1498&rft.pages=1491-1498&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/1520-0426(2004)021%3C1491:CFBSIA%3E2.0.CO;2&rft_dat=%3Cproquest_cross%3E698832361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222530791&rft_id=info:pmid/&rfr_iscdi=true |