Computation of invariant tori by Newton–Krylov methods in large-scale dissipative systems

A method to compute invariant tori in high-dimensional systems, obtained as discretizations of PDEs, by continuation and Newton–Krylov methods is described. Invariant tori are found as fixed points of a generalized Poincaré map so that the dimension of the system of equations to be solved is that of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D 2010-02, Vol.239 (3), p.123-133
Hauptverfasser: Sánchez, J., Net, M., Simó, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 3
container_start_page 123
container_title Physica. D
container_volume 239
creator Sánchez, J.
Net, M.
Simó, C.
description A method to compute invariant tori in high-dimensional systems, obtained as discretizations of PDEs, by continuation and Newton–Krylov methods is described. Invariant tori are found as fixed points of a generalized Poincaré map so that the dimension of the system of equations to be solved is that of the original system. Due to the dissipative nature of the problems studied, the convergence of the linear solvers is extremely fast. The computation of periodic orbits inside the Arnold’s tongues is also considered. Thermal convection of a binary mixture of fluids, in a rectangular cavity, has been used to test the method.
doi_str_mv 10.1016/j.physd.2009.10.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35110538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167278909003273</els_id><sourcerecordid>35110538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-51ec308a9e36b108b1eea8f0d87ef374218642394403488703ebef2f7e1df0083</originalsourceid><addsrcrecordid>eNp9kL2O1DAUhS0EEsPCE9C4gS6z13YmdgoKNOJPrKCBisLyONesR0kcfD2D0vEOvCFPQrKzoqS60tF3ztU5jD0XsBUgmuvjdrqdqdtKgHZRtiDkA7YRRsvKgJQP2WahdCW1aR-zJ0RHABBa6Q37tk_DdCquxDTyFHgczy5HNxZeUo78MPNP-LOk8c-v3x_z3KczH7Dcpo4Wkvcuf8eKvOuRd5EoTkvOGTnNVHCgp-xRcD3hs_t7xb6-ffNl_766-fzuw_71TeVVU5dqJ9ArMK5F1RwEmINAdCZAZzQGpWspTFNL1dY1qNoYDQoPGGTQKLoAYNQVe3nJnXL6cUIqdojkse_diOlEVu2EgJ1aQXUBfU5EGYOdchxcnq0Auw5pj_ZuSLsOuYrLkIvrxX28W6uG7EYf6Z9VSgWtadb0VxcOl67niNmSjzh67GJGX2yX4n___AUX74w6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35110538</pqid></control><display><type>article</type><title>Computation of invariant tori by Newton–Krylov methods in large-scale dissipative systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sánchez, J. ; Net, M. ; Simó, C.</creator><creatorcontrib>Sánchez, J. ; Net, M. ; Simó, C.</creatorcontrib><description>A method to compute invariant tori in high-dimensional systems, obtained as discretizations of PDEs, by continuation and Newton–Krylov methods is described. Invariant tori are found as fixed points of a generalized Poincaré map so that the dimension of the system of equations to be solved is that of the original system. Due to the dissipative nature of the problems studied, the convergence of the linear solvers is extremely fast. The computation of periodic orbits inside the Arnold’s tongues is also considered. Thermal convection of a binary mixture of fluids, in a rectangular cavity, has been used to test the method.</description><identifier>ISSN: 0167-2789</identifier><identifier>EISSN: 1872-8022</identifier><identifier>DOI: 10.1016/j.physd.2009.10.012</identifier><identifier>CODEN: PDNPDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Continuation methods ; Exact sciences and technology ; Generalized Poincaré map ; Invariant tori ; Newton–Krylov methods ; Physics ; Resonances ; Variational equations</subject><ispartof>Physica. D, 2010-02, Vol.239 (3), p.123-133</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-51ec308a9e36b108b1eea8f0d87ef374218642394403488703ebef2f7e1df0083</citedby><cites>FETCH-LOGICAL-c364t-51ec308a9e36b108b1eea8f0d87ef374218642394403488703ebef2f7e1df0083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physd.2009.10.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22309868$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sánchez, J.</creatorcontrib><creatorcontrib>Net, M.</creatorcontrib><creatorcontrib>Simó, C.</creatorcontrib><title>Computation of invariant tori by Newton–Krylov methods in large-scale dissipative systems</title><title>Physica. D</title><description>A method to compute invariant tori in high-dimensional systems, obtained as discretizations of PDEs, by continuation and Newton–Krylov methods is described. Invariant tori are found as fixed points of a generalized Poincaré map so that the dimension of the system of equations to be solved is that of the original system. Due to the dissipative nature of the problems studied, the convergence of the linear solvers is extremely fast. The computation of periodic orbits inside the Arnold’s tongues is also considered. Thermal convection of a binary mixture of fluids, in a rectangular cavity, has been used to test the method.</description><subject>Continuation methods</subject><subject>Exact sciences and technology</subject><subject>Generalized Poincaré map</subject><subject>Invariant tori</subject><subject>Newton–Krylov methods</subject><subject>Physics</subject><subject>Resonances</subject><subject>Variational equations</subject><issn>0167-2789</issn><issn>1872-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kL2O1DAUhS0EEsPCE9C4gS6z13YmdgoKNOJPrKCBisLyONesR0kcfD2D0vEOvCFPQrKzoqS60tF3ztU5jD0XsBUgmuvjdrqdqdtKgHZRtiDkA7YRRsvKgJQP2WahdCW1aR-zJ0RHABBa6Q37tk_DdCquxDTyFHgczy5HNxZeUo78MPNP-LOk8c-v3x_z3KczH7Dcpo4Wkvcuf8eKvOuRd5EoTkvOGTnNVHCgp-xRcD3hs_t7xb6-ffNl_766-fzuw_71TeVVU5dqJ9ArMK5F1RwEmINAdCZAZzQGpWspTFNL1dY1qNoYDQoPGGTQKLoAYNQVe3nJnXL6cUIqdojkse_diOlEVu2EgJ1aQXUBfU5EGYOdchxcnq0Auw5pj_ZuSLsOuYrLkIvrxX28W6uG7EYf6Z9VSgWtadb0VxcOl67niNmSjzh67GJGX2yX4n___AUX74w6</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Sánchez, J.</creator><creator>Net, M.</creator><creator>Simó, C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100201</creationdate><title>Computation of invariant tori by Newton–Krylov methods in large-scale dissipative systems</title><author>Sánchez, J. ; Net, M. ; Simó, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-51ec308a9e36b108b1eea8f0d87ef374218642394403488703ebef2f7e1df0083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Continuation methods</topic><topic>Exact sciences and technology</topic><topic>Generalized Poincaré map</topic><topic>Invariant tori</topic><topic>Newton–Krylov methods</topic><topic>Physics</topic><topic>Resonances</topic><topic>Variational equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez, J.</creatorcontrib><creatorcontrib>Net, M.</creatorcontrib><creatorcontrib>Simó, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez, J.</au><au>Net, M.</au><au>Simó, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of invariant tori by Newton–Krylov methods in large-scale dissipative systems</atitle><jtitle>Physica. D</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>239</volume><issue>3</issue><spage>123</spage><epage>133</epage><pages>123-133</pages><issn>0167-2789</issn><eissn>1872-8022</eissn><coden>PDNPDT</coden><abstract>A method to compute invariant tori in high-dimensional systems, obtained as discretizations of PDEs, by continuation and Newton–Krylov methods is described. Invariant tori are found as fixed points of a generalized Poincaré map so that the dimension of the system of equations to be solved is that of the original system. Due to the dissipative nature of the problems studied, the convergence of the linear solvers is extremely fast. The computation of periodic orbits inside the Arnold’s tongues is also considered. Thermal convection of a binary mixture of fluids, in a rectangular cavity, has been used to test the method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physd.2009.10.012</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-2789
ispartof Physica. D, 2010-02, Vol.239 (3), p.123-133
issn 0167-2789
1872-8022
language eng
recordid cdi_proquest_miscellaneous_35110538
source Elsevier ScienceDirect Journals Complete
subjects Continuation methods
Exact sciences and technology
Generalized Poincaré map
Invariant tori
Newton–Krylov methods
Physics
Resonances
Variational equations
title Computation of invariant tori by Newton–Krylov methods in large-scale dissipative systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A00%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20invariant%20tori%20by%20Newton%E2%80%93Krylov%20methods%20in%20large-scale%20dissipative%20systems&rft.jtitle=Physica.%20D&rft.au=S%C3%A1nchez,%20J.&rft.date=2010-02-01&rft.volume=239&rft.issue=3&rft.spage=123&rft.epage=133&rft.pages=123-133&rft.issn=0167-2789&rft.eissn=1872-8022&rft.coden=PDNPDT&rft_id=info:doi/10.1016/j.physd.2009.10.012&rft_dat=%3Cproquest_cross%3E35110538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35110538&rft_id=info:pmid/&rft_els_id=S0167278909003273&rfr_iscdi=true