Assessment of different RPIM parameters for static analyses of shear deformable laminated composite plates
Different radial point interpolation method (RPIM) parameters using multi-quadratic basis functions are investigated in order to show their influence on the accuracy of the results and on the necessary computation time. Static deflection analyses of shear deformable laminated composites plates using...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2009-08, Vol.44 (3), p.423-431 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 431 |
---|---|
container_issue | 3 |
container_start_page | 423 |
container_title | Computational mechanics |
container_volume | 44 |
creator | Djeukou, Armel von Estorff, Otto |
description | Different radial point interpolation method (RPIM) parameters using multi-quadratic basis functions are investigated in order to show their influence on the accuracy of the results and on the necessary computation time. Static deflection analyses of shear deformable laminated composites plates using a higher order shear deformable theory are performed for these purposes. The problem domain is represented by regularly distributed nodes, and a variational formulation is used to derive the discrete system of equations which is based on the third order plate theory suggested by Reddy. The essential boundary conditions are imposed separately, as in the FEM, by means of the penalty method since the RPIM shape functions possess the Kronecker delta function property. The Gauss quadrature scheme is used to perform the integration over the cells and the layers numerically. |
doi_str_mv | 10.1007/s00466-008-0360-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35052381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35052381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-139bb13ceb01ffedff1d90c32edf5038e3684bca17656ceda380f91586c35bb33</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8BwVt10jRp97gsfiysKKLnkKYT7dIvM93D_nuzVBAET0kmzzPMvIxdCrgRAPktAWRaJwBFAlJDoo7YTGQyTWCRZsdsBiIvklzn6pSdEW0BhCqkmrHtkgiJWuxG3nte1d5jODxeX9ZPfLDBtjhiIO77wGm0Y-247Wyzj9ZBoE-0gVcYv1tbNsgb29adHbHirm-HnuoR-dDEAp2zE28bwoufc87e7-_eVo_J5vlhvVpuEiezfEyEXJSlkA5LEHGYyntRLcDJNF4VyAKlLrLSWZFrpR1WVhbgF3Ed7aQqSynn7HrqO4T-a4c0mrYmh01jO-x3ZKQClcpCRPDqD7jtdyEuRyZNtZAQwTxSYqJc6IkCejOEurVhbwSYQ_Zmyt7E7M0he6Oik04ORbb7wPDb-X_pG1J6iFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261305057</pqid></control><display><type>article</type><title>Assessment of different RPIM parameters for static analyses of shear deformable laminated composite plates</title><source>SpringerNature Journals</source><creator>Djeukou, Armel ; von Estorff, Otto</creator><creatorcontrib>Djeukou, Armel ; von Estorff, Otto</creatorcontrib><description>Different radial point interpolation method (RPIM) parameters using multi-quadratic basis functions are investigated in order to show their influence on the accuracy of the results and on the necessary computation time. Static deflection analyses of shear deformable laminated composites plates using a higher order shear deformable theory are performed for these purposes. The problem domain is represented by regularly distributed nodes, and a variational formulation is used to derive the discrete system of equations which is based on the third order plate theory suggested by Reddy. The essential boundary conditions are imposed separately, as in the FEM, by means of the penalty method since the RPIM shape functions possess the Kronecker delta function property. The Gauss quadrature scheme is used to perform the integration over the cells and the layers numerically.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-008-0360-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Basis functions ; Boundary conditions ; Classical and Continuum Physics ; Composite structures ; Computational Science and Engineering ; Deformation ; Delta function ; Engineering ; Finite element method ; Formability ; Interpolation ; Laminates ; Original Paper ; Parameters ; Plate theory ; Shape functions ; Shear ; Theoretical and Applied Mechanics</subject><ispartof>Computational mechanics, 2009-08, Vol.44 (3), p.423-431</ispartof><rights>Springer-Verlag 2009</rights><rights>Computational Mechanics is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-139bb13ceb01ffedff1d90c32edf5038e3684bca17656ceda380f91586c35bb33</citedby><cites>FETCH-LOGICAL-c347t-139bb13ceb01ffedff1d90c32edf5038e3684bca17656ceda380f91586c35bb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-008-0360-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-008-0360-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Djeukou, Armel</creatorcontrib><creatorcontrib>von Estorff, Otto</creatorcontrib><title>Assessment of different RPIM parameters for static analyses of shear deformable laminated composite plates</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>Different radial point interpolation method (RPIM) parameters using multi-quadratic basis functions are investigated in order to show their influence on the accuracy of the results and on the necessary computation time. Static deflection analyses of shear deformable laminated composites plates using a higher order shear deformable theory are performed for these purposes. The problem domain is represented by regularly distributed nodes, and a variational formulation is used to derive the discrete system of equations which is based on the third order plate theory suggested by Reddy. The essential boundary conditions are imposed separately, as in the FEM, by means of the penalty method since the RPIM shape functions possess the Kronecker delta function property. The Gauss quadrature scheme is used to perform the integration over the cells and the layers numerically.</description><subject>Basis functions</subject><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Composite structures</subject><subject>Computational Science and Engineering</subject><subject>Deformation</subject><subject>Delta function</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Formability</subject><subject>Interpolation</subject><subject>Laminates</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Plate theory</subject><subject>Shape functions</subject><subject>Shear</subject><subject>Theoretical and Applied Mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8BwVt10jRp97gsfiysKKLnkKYT7dIvM93D_nuzVBAET0kmzzPMvIxdCrgRAPktAWRaJwBFAlJDoo7YTGQyTWCRZsdsBiIvklzn6pSdEW0BhCqkmrHtkgiJWuxG3nte1d5jODxeX9ZPfLDBtjhiIO77wGm0Y-247Wyzj9ZBoE-0gVcYv1tbNsgb29adHbHirm-HnuoR-dDEAp2zE28bwoufc87e7-_eVo_J5vlhvVpuEiezfEyEXJSlkA5LEHGYyntRLcDJNF4VyAKlLrLSWZFrpR1WVhbgF3Ed7aQqSynn7HrqO4T-a4c0mrYmh01jO-x3ZKQClcpCRPDqD7jtdyEuRyZNtZAQwTxSYqJc6IkCejOEurVhbwSYQ_Zmyt7E7M0he6Oik04ORbb7wPDb-X_pG1J6iFA</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Djeukou, Armel</creator><creator>von Estorff, Otto</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090801</creationdate><title>Assessment of different RPIM parameters for static analyses of shear deformable laminated composite plates</title><author>Djeukou, Armel ; von Estorff, Otto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-139bb13ceb01ffedff1d90c32edf5038e3684bca17656ceda380f91586c35bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Basis functions</topic><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Composite structures</topic><topic>Computational Science and Engineering</topic><topic>Deformation</topic><topic>Delta function</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Formability</topic><topic>Interpolation</topic><topic>Laminates</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Plate theory</topic><topic>Shape functions</topic><topic>Shear</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djeukou, Armel</creatorcontrib><creatorcontrib>von Estorff, Otto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djeukou, Armel</au><au>von Estorff, Otto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of different RPIM parameters for static analyses of shear deformable laminated composite plates</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>44</volume><issue>3</issue><spage>423</spage><epage>431</epage><pages>423-431</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>Different radial point interpolation method (RPIM) parameters using multi-quadratic basis functions are investigated in order to show their influence on the accuracy of the results and on the necessary computation time. Static deflection analyses of shear deformable laminated composites plates using a higher order shear deformable theory are performed for these purposes. The problem domain is represented by regularly distributed nodes, and a variational formulation is used to derive the discrete system of equations which is based on the third order plate theory suggested by Reddy. The essential boundary conditions are imposed separately, as in the FEM, by means of the penalty method since the RPIM shape functions possess the Kronecker delta function property. The Gauss quadrature scheme is used to perform the integration over the cells and the layers numerically.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00466-008-0360-5</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2009-08, Vol.44 (3), p.423-431 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_miscellaneous_35052381 |
source | SpringerNature Journals |
subjects | Basis functions Boundary conditions Classical and Continuum Physics Composite structures Computational Science and Engineering Deformation Delta function Engineering Finite element method Formability Interpolation Laminates Original Paper Parameters Plate theory Shape functions Shear Theoretical and Applied Mechanics |
title | Assessment of different RPIM parameters for static analyses of shear deformable laminated composite plates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20different%20RPIM%20parameters%20for%20static%20analyses%20of%20shear%20deformable%20laminated%20composite%20plates&rft.jtitle=Computational%20mechanics&rft.au=Djeukou,%20Armel&rft.date=2009-08-01&rft.volume=44&rft.issue=3&rft.spage=423&rft.epage=431&rft.pages=423-431&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-008-0360-5&rft_dat=%3Cproquest_cross%3E35052381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261305057&rft_id=info:pmid/&rfr_iscdi=true |