Assessment of different RPIM parameters for static analyses of shear deformable laminated composite plates

Different radial point interpolation method (RPIM) parameters using multi-quadratic basis functions are investigated in order to show their influence on the accuracy of the results and on the necessary computation time. Static deflection analyses of shear deformable laminated composites plates using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2009-08, Vol.44 (3), p.423-431
Hauptverfasser: Djeukou, Armel, von Estorff, Otto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 431
container_issue 3
container_start_page 423
container_title Computational mechanics
container_volume 44
creator Djeukou, Armel
von Estorff, Otto
description Different radial point interpolation method (RPIM) parameters using multi-quadratic basis functions are investigated in order to show their influence on the accuracy of the results and on the necessary computation time. Static deflection analyses of shear deformable laminated composites plates using a higher order shear deformable theory are performed for these purposes. The problem domain is represented by regularly distributed nodes, and a variational formulation is used to derive the discrete system of equations which is based on the third order plate theory suggested by Reddy. The essential boundary conditions are imposed separately, as in the FEM, by means of the penalty method since the RPIM shape functions possess the Kronecker delta function property. The Gauss quadrature scheme is used to perform the integration over the cells and the layers numerically.
doi_str_mv 10.1007/s00466-008-0360-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35052381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35052381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-139bb13ceb01ffedff1d90c32edf5038e3684bca17656ceda380f91586c35bb33</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8BwVt10jRp97gsfiysKKLnkKYT7dIvM93D_nuzVBAET0kmzzPMvIxdCrgRAPktAWRaJwBFAlJDoo7YTGQyTWCRZsdsBiIvklzn6pSdEW0BhCqkmrHtkgiJWuxG3nte1d5jODxeX9ZPfLDBtjhiIO77wGm0Y-247Wyzj9ZBoE-0gVcYv1tbNsgb29adHbHirm-HnuoR-dDEAp2zE28bwoufc87e7-_eVo_J5vlhvVpuEiezfEyEXJSlkA5LEHGYyntRLcDJNF4VyAKlLrLSWZFrpR1WVhbgF3Ed7aQqSynn7HrqO4T-a4c0mrYmh01jO-x3ZKQClcpCRPDqD7jtdyEuRyZNtZAQwTxSYqJc6IkCejOEurVhbwSYQ_Zmyt7E7M0he6Oik04ORbb7wPDb-X_pG1J6iFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261305057</pqid></control><display><type>article</type><title>Assessment of different RPIM parameters for static analyses of shear deformable laminated composite plates</title><source>SpringerNature Journals</source><creator>Djeukou, Armel ; von Estorff, Otto</creator><creatorcontrib>Djeukou, Armel ; von Estorff, Otto</creatorcontrib><description>Different radial point interpolation method (RPIM) parameters using multi-quadratic basis functions are investigated in order to show their influence on the accuracy of the results and on the necessary computation time. Static deflection analyses of shear deformable laminated composites plates using a higher order shear deformable theory are performed for these purposes. The problem domain is represented by regularly distributed nodes, and a variational formulation is used to derive the discrete system of equations which is based on the third order plate theory suggested by Reddy. The essential boundary conditions are imposed separately, as in the FEM, by means of the penalty method since the RPIM shape functions possess the Kronecker delta function property. The Gauss quadrature scheme is used to perform the integration over the cells and the layers numerically.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-008-0360-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Basis functions ; Boundary conditions ; Classical and Continuum Physics ; Composite structures ; Computational Science and Engineering ; Deformation ; Delta function ; Engineering ; Finite element method ; Formability ; Interpolation ; Laminates ; Original Paper ; Parameters ; Plate theory ; Shape functions ; Shear ; Theoretical and Applied Mechanics</subject><ispartof>Computational mechanics, 2009-08, Vol.44 (3), p.423-431</ispartof><rights>Springer-Verlag 2009</rights><rights>Computational Mechanics is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-139bb13ceb01ffedff1d90c32edf5038e3684bca17656ceda380f91586c35bb33</citedby><cites>FETCH-LOGICAL-c347t-139bb13ceb01ffedff1d90c32edf5038e3684bca17656ceda380f91586c35bb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-008-0360-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-008-0360-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Djeukou, Armel</creatorcontrib><creatorcontrib>von Estorff, Otto</creatorcontrib><title>Assessment of different RPIM parameters for static analyses of shear deformable laminated composite plates</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>Different radial point interpolation method (RPIM) parameters using multi-quadratic basis functions are investigated in order to show their influence on the accuracy of the results and on the necessary computation time. Static deflection analyses of shear deformable laminated composites plates using a higher order shear deformable theory are performed for these purposes. The problem domain is represented by regularly distributed nodes, and a variational formulation is used to derive the discrete system of equations which is based on the third order plate theory suggested by Reddy. The essential boundary conditions are imposed separately, as in the FEM, by means of the penalty method since the RPIM shape functions possess the Kronecker delta function property. The Gauss quadrature scheme is used to perform the integration over the cells and the layers numerically.</description><subject>Basis functions</subject><subject>Boundary conditions</subject><subject>Classical and Continuum Physics</subject><subject>Composite structures</subject><subject>Computational Science and Engineering</subject><subject>Deformation</subject><subject>Delta function</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Formability</subject><subject>Interpolation</subject><subject>Laminates</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Plate theory</subject><subject>Shape functions</subject><subject>Shear</subject><subject>Theoretical and Applied Mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8BwVt10jRp97gsfiysKKLnkKYT7dIvM93D_nuzVBAET0kmzzPMvIxdCrgRAPktAWRaJwBFAlJDoo7YTGQyTWCRZsdsBiIvklzn6pSdEW0BhCqkmrHtkgiJWuxG3nte1d5jODxeX9ZPfLDBtjhiIO77wGm0Y-247Wyzj9ZBoE-0gVcYv1tbNsgb29adHbHirm-HnuoR-dDEAp2zE28bwoufc87e7-_eVo_J5vlhvVpuEiezfEyEXJSlkA5LEHGYyntRLcDJNF4VyAKlLrLSWZFrpR1WVhbgF3Ed7aQqSynn7HrqO4T-a4c0mrYmh01jO-x3ZKQClcpCRPDqD7jtdyEuRyZNtZAQwTxSYqJc6IkCejOEurVhbwSYQ_Zmyt7E7M0he6Oik04ORbb7wPDb-X_pG1J6iFA</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Djeukou, Armel</creator><creator>von Estorff, Otto</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090801</creationdate><title>Assessment of different RPIM parameters for static analyses of shear deformable laminated composite plates</title><author>Djeukou, Armel ; von Estorff, Otto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-139bb13ceb01ffedff1d90c32edf5038e3684bca17656ceda380f91586c35bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Basis functions</topic><topic>Boundary conditions</topic><topic>Classical and Continuum Physics</topic><topic>Composite structures</topic><topic>Computational Science and Engineering</topic><topic>Deformation</topic><topic>Delta function</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Formability</topic><topic>Interpolation</topic><topic>Laminates</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Plate theory</topic><topic>Shape functions</topic><topic>Shear</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djeukou, Armel</creatorcontrib><creatorcontrib>von Estorff, Otto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djeukou, Armel</au><au>von Estorff, Otto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of different RPIM parameters for static analyses of shear deformable laminated composite plates</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>44</volume><issue>3</issue><spage>423</spage><epage>431</epage><pages>423-431</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>Different radial point interpolation method (RPIM) parameters using multi-quadratic basis functions are investigated in order to show their influence on the accuracy of the results and on the necessary computation time. Static deflection analyses of shear deformable laminated composites plates using a higher order shear deformable theory are performed for these purposes. The problem domain is represented by regularly distributed nodes, and a variational formulation is used to derive the discrete system of equations which is based on the third order plate theory suggested by Reddy. The essential boundary conditions are imposed separately, as in the FEM, by means of the penalty method since the RPIM shape functions possess the Kronecker delta function property. The Gauss quadrature scheme is used to perform the integration over the cells and the layers numerically.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00466-008-0360-5</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2009-08, Vol.44 (3), p.423-431
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_miscellaneous_35052381
source SpringerNature Journals
subjects Basis functions
Boundary conditions
Classical and Continuum Physics
Composite structures
Computational Science and Engineering
Deformation
Delta function
Engineering
Finite element method
Formability
Interpolation
Laminates
Original Paper
Parameters
Plate theory
Shape functions
Shear
Theoretical and Applied Mechanics
title Assessment of different RPIM parameters for static analyses of shear deformable laminated composite plates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20different%20RPIM%20parameters%20for%20static%20analyses%20of%20shear%20deformable%20laminated%20composite%20plates&rft.jtitle=Computational%20mechanics&rft.au=Djeukou,%20Armel&rft.date=2009-08-01&rft.volume=44&rft.issue=3&rft.spage=423&rft.epage=431&rft.pages=423-431&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-008-0360-5&rft_dat=%3Cproquest_cross%3E35052381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261305057&rft_id=info:pmid/&rfr_iscdi=true