SERS detection of indirect viral DNA capture using colloidal gold and methylene blue as a Raman label

An indirect capture model assay using colloidal Au nanoparticles is demonstrated for surface enhanced Raman scattering (SERS) spectroscopy detection of DNA. The sequence targeted for capture was derived from the West Nile Virus (WNV) RNA genome and selected on the basis of exhibiting minimal seconda...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2009-12, Vol.25 (4), p.674-681
Hauptverfasser: Harpster, Mark H., Zhang, Hao, Sankara-Warrier, Ajaya K., Ray, Bryan H., Ward, Timothy R., Kollmar, J. Pablo, Carron, Keith T., Mecham, James O., Corcoran, Robert C., Wilson, William C., Johnson, Patrick A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 681
container_issue 4
container_start_page 674
container_title Biosensors & bioelectronics
container_volume 25
creator Harpster, Mark H.
Zhang, Hao
Sankara-Warrier, Ajaya K.
Ray, Bryan H.
Ward, Timothy R.
Kollmar, J. Pablo
Carron, Keith T.
Mecham, James O.
Corcoran, Robert C.
Wilson, William C.
Johnson, Patrick A.
description An indirect capture model assay using colloidal Au nanoparticles is demonstrated for surface enhanced Raman scattering (SERS) spectroscopy detection of DNA. The sequence targeted for capture was derived from the West Nile Virus (WNV) RNA genome and selected on the basis of exhibiting minimal secondary structure formation. Upon incubation with colloidal Au, hybridization complexes containing the WNV target sequence, a complementary capture oligonucleotide conjugated to a strong tethering group and a complementary reporter oligonucleotide conjugated to methylene blue (MB), a Raman label, anchors the resultant ternary complex to Au nanoparticles and positions MB within the required sensing distance for SERS enhancement. The subsequent elicitation of surface enhanced plasmon resonance by laser excitation provides a spectral peak signature profile that is capture-specific and characteristic of the Raman spectrum for MB. Detection sensitivity is in the submicromolar range and was shown to be highest for thiol, and less so for amino, modifications at the 5′ terminus of the capture oligonucleotide. Finally, using Quartz Crystal Microbalance-Dissipation as a tool for modeling ternary complex binding to Au surfaces, quantitative measurements of surface mass coverage on Au plated sensor crystals established a positive correlation between levels of ternary complex adsorption and their correspondent levels of SERS signal intensification. Adapted to a compact Raman spectrometer, which is designed for analyte detection in capillary tubes, this assay provides a rapid, mobile and cost effective alternative to expensive spectroscopic instrumentation, which is often restricted to analytical laboratories.
doi_str_mv 10.1016/j.bios.2009.05.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35044855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566309002917</els_id><sourcerecordid>21164825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-b8c9bdfc11cacba60347d7b09d89d4fed84f514bee64d31a5477c6bc5860d0463</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaLZJ_0APRZf2ZndkS7INvYQk_YCQQNKehT7GqRZZ2kp2IP--XnZpb-1pGOaZYXgfQt4yqBkw-XFbG59K3QAMNYgaGnhBNqzv2oo3rXhJNjAIWQkp21PyupQtAHRsgFfklA0dB8nlhuDD9f0DdTijnX2KNI3UR-fz2tInn3WgV7cX1OrdvGSkS_HxkdoUQvJunT2m4KiOjk44_3wOGJGasCDVhWp6rycdadAGwzk5GXUo-OZYz8iPz9ffL79WN3dfvl1e3FSWMzFXpreDcaNlzGprtISWd64zMLh-cHxE1_NRMG4QJXct04J3nZXGil6CAy7bM_LhcHeX068Fy6wmXyyGoCOmpahWAOe9EP8FG8Yk75s92BxAm1MpGUe1y37S-VkxUHsLaqv2FtTeggKhVgvr0rvj9cVM6P6uHGNfgfdHQBerw5h1tL784ZpGQtOxbuU-HThcQ3vymFWxHqPFgyHlkv_XH78BHpylgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21164825</pqid></control><display><type>article</type><title>SERS detection of indirect viral DNA capture using colloidal gold and methylene blue as a Raman label</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Harpster, Mark H. ; Zhang, Hao ; Sankara-Warrier, Ajaya K. ; Ray, Bryan H. ; Ward, Timothy R. ; Kollmar, J. Pablo ; Carron, Keith T. ; Mecham, James O. ; Corcoran, Robert C. ; Wilson, William C. ; Johnson, Patrick A.</creator><creatorcontrib>Harpster, Mark H. ; Zhang, Hao ; Sankara-Warrier, Ajaya K. ; Ray, Bryan H. ; Ward, Timothy R. ; Kollmar, J. Pablo ; Carron, Keith T. ; Mecham, James O. ; Corcoran, Robert C. ; Wilson, William C. ; Johnson, Patrick A.</creatorcontrib><description>An indirect capture model assay using colloidal Au nanoparticles is demonstrated for surface enhanced Raman scattering (SERS) spectroscopy detection of DNA. The sequence targeted for capture was derived from the West Nile Virus (WNV) RNA genome and selected on the basis of exhibiting minimal secondary structure formation. Upon incubation with colloidal Au, hybridization complexes containing the WNV target sequence, a complementary capture oligonucleotide conjugated to a strong tethering group and a complementary reporter oligonucleotide conjugated to methylene blue (MB), a Raman label, anchors the resultant ternary complex to Au nanoparticles and positions MB within the required sensing distance for SERS enhancement. The subsequent elicitation of surface enhanced plasmon resonance by laser excitation provides a spectral peak signature profile that is capture-specific and characteristic of the Raman spectrum for MB. Detection sensitivity is in the submicromolar range and was shown to be highest for thiol, and less so for amino, modifications at the 5′ terminus of the capture oligonucleotide. Finally, using Quartz Crystal Microbalance-Dissipation as a tool for modeling ternary complex binding to Au surfaces, quantitative measurements of surface mass coverage on Au plated sensor crystals established a positive correlation between levels of ternary complex adsorption and their correspondent levels of SERS signal intensification. Adapted to a compact Raman spectrometer, which is designed for analyte detection in capillary tubes, this assay provides a rapid, mobile and cost effective alternative to expensive spectroscopic instrumentation, which is often restricted to analytical laboratories.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2009.05.020</identifier><identifier>PMID: 19740646</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Biological and medical sciences ; Biosensing Techniques - methods ; Biotechnology ; DNA ; DNA, Viral - analysis ; Fundamental and applied biological sciences. Psychology ; Gold Colloid - chemistry ; Indirect nucleic acid capture ; Methylene Blue ; Quartz crystal microbalance-dissipation ; Spectrum Analysis, Raman - methods ; Staining and Labeling - methods ; Surface enhanced Raman scattering ; West Nile Virus</subject><ispartof>Biosensors &amp; bioelectronics, 2009-12, Vol.25 (4), p.674-681</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-b8c9bdfc11cacba60347d7b09d89d4fed84f514bee64d31a5477c6bc5860d0463</citedby><cites>FETCH-LOGICAL-c415t-b8c9bdfc11cacba60347d7b09d89d4fed84f514bee64d31a5477c6bc5860d0463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bios.2009.05.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22602717$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19740646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harpster, Mark H.</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Sankara-Warrier, Ajaya K.</creatorcontrib><creatorcontrib>Ray, Bryan H.</creatorcontrib><creatorcontrib>Ward, Timothy R.</creatorcontrib><creatorcontrib>Kollmar, J. Pablo</creatorcontrib><creatorcontrib>Carron, Keith T.</creatorcontrib><creatorcontrib>Mecham, James O.</creatorcontrib><creatorcontrib>Corcoran, Robert C.</creatorcontrib><creatorcontrib>Wilson, William C.</creatorcontrib><creatorcontrib>Johnson, Patrick A.</creatorcontrib><title>SERS detection of indirect viral DNA capture using colloidal gold and methylene blue as a Raman label</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>An indirect capture model assay using colloidal Au nanoparticles is demonstrated for surface enhanced Raman scattering (SERS) spectroscopy detection of DNA. The sequence targeted for capture was derived from the West Nile Virus (WNV) RNA genome and selected on the basis of exhibiting minimal secondary structure formation. Upon incubation with colloidal Au, hybridization complexes containing the WNV target sequence, a complementary capture oligonucleotide conjugated to a strong tethering group and a complementary reporter oligonucleotide conjugated to methylene blue (MB), a Raman label, anchors the resultant ternary complex to Au nanoparticles and positions MB within the required sensing distance for SERS enhancement. The subsequent elicitation of surface enhanced plasmon resonance by laser excitation provides a spectral peak signature profile that is capture-specific and characteristic of the Raman spectrum for MB. Detection sensitivity is in the submicromolar range and was shown to be highest for thiol, and less so for amino, modifications at the 5′ terminus of the capture oligonucleotide. Finally, using Quartz Crystal Microbalance-Dissipation as a tool for modeling ternary complex binding to Au surfaces, quantitative measurements of surface mass coverage on Au plated sensor crystals established a positive correlation between levels of ternary complex adsorption and their correspondent levels of SERS signal intensification. Adapted to a compact Raman spectrometer, which is designed for analyte detection in capillary tubes, this assay provides a rapid, mobile and cost effective alternative to expensive spectroscopic instrumentation, which is often restricted to analytical laboratories.</description><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - methods</subject><subject>Biotechnology</subject><subject>DNA</subject><subject>DNA, Viral - analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gold Colloid - chemistry</subject><subject>Indirect nucleic acid capture</subject><subject>Methylene Blue</subject><subject>Quartz crystal microbalance-dissipation</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Staining and Labeling - methods</subject><subject>Surface enhanced Raman scattering</subject><subject>West Nile Virus</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVpaLZJ_0APRZf2ZndkS7INvYQk_YCQQNKehT7GqRZZ2kp2IP--XnZpb-1pGOaZYXgfQt4yqBkw-XFbG59K3QAMNYgaGnhBNqzv2oo3rXhJNjAIWQkp21PyupQtAHRsgFfklA0dB8nlhuDD9f0DdTijnX2KNI3UR-fz2tInn3WgV7cX1OrdvGSkS_HxkdoUQvJunT2m4KiOjk44_3wOGJGasCDVhWp6rycdadAGwzk5GXUo-OZYz8iPz9ffL79WN3dfvl1e3FSWMzFXpreDcaNlzGprtISWd64zMLh-cHxE1_NRMG4QJXct04J3nZXGil6CAy7bM_LhcHeX068Fy6wmXyyGoCOmpahWAOe9EP8FG8Yk75s92BxAm1MpGUe1y37S-VkxUHsLaqv2FtTeggKhVgvr0rvj9cVM6P6uHGNfgfdHQBerw5h1tL784ZpGQtOxbuU-HThcQ3vymFWxHqPFgyHlkv_XH78BHpylgQ</recordid><startdate>20091215</startdate><enddate>20091215</enddate><creator>Harpster, Mark H.</creator><creator>Zhang, Hao</creator><creator>Sankara-Warrier, Ajaya K.</creator><creator>Ray, Bryan H.</creator><creator>Ward, Timothy R.</creator><creator>Kollmar, J. Pablo</creator><creator>Carron, Keith T.</creator><creator>Mecham, James O.</creator><creator>Corcoran, Robert C.</creator><creator>Wilson, William C.</creator><creator>Johnson, Patrick A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20091215</creationdate><title>SERS detection of indirect viral DNA capture using colloidal gold and methylene blue as a Raman label</title><author>Harpster, Mark H. ; Zhang, Hao ; Sankara-Warrier, Ajaya K. ; Ray, Bryan H. ; Ward, Timothy R. ; Kollmar, J. Pablo ; Carron, Keith T. ; Mecham, James O. ; Corcoran, Robert C. ; Wilson, William C. ; Johnson, Patrick A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-b8c9bdfc11cacba60347d7b09d89d4fed84f514bee64d31a5477c6bc5860d0463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - methods</topic><topic>Biotechnology</topic><topic>DNA</topic><topic>DNA, Viral - analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gold Colloid - chemistry</topic><topic>Indirect nucleic acid capture</topic><topic>Methylene Blue</topic><topic>Quartz crystal microbalance-dissipation</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Staining and Labeling - methods</topic><topic>Surface enhanced Raman scattering</topic><topic>West Nile Virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harpster, Mark H.</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Sankara-Warrier, Ajaya K.</creatorcontrib><creatorcontrib>Ray, Bryan H.</creatorcontrib><creatorcontrib>Ward, Timothy R.</creatorcontrib><creatorcontrib>Kollmar, J. Pablo</creatorcontrib><creatorcontrib>Carron, Keith T.</creatorcontrib><creatorcontrib>Mecham, James O.</creatorcontrib><creatorcontrib>Corcoran, Robert C.</creatorcontrib><creatorcontrib>Wilson, William C.</creatorcontrib><creatorcontrib>Johnson, Patrick A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harpster, Mark H.</au><au>Zhang, Hao</au><au>Sankara-Warrier, Ajaya K.</au><au>Ray, Bryan H.</au><au>Ward, Timothy R.</au><au>Kollmar, J. Pablo</au><au>Carron, Keith T.</au><au>Mecham, James O.</au><au>Corcoran, Robert C.</au><au>Wilson, William C.</au><au>Johnson, Patrick A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SERS detection of indirect viral DNA capture using colloidal gold and methylene blue as a Raman label</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2009-12-15</date><risdate>2009</risdate><volume>25</volume><issue>4</issue><spage>674</spage><epage>681</epage><pages>674-681</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>An indirect capture model assay using colloidal Au nanoparticles is demonstrated for surface enhanced Raman scattering (SERS) spectroscopy detection of DNA. The sequence targeted for capture was derived from the West Nile Virus (WNV) RNA genome and selected on the basis of exhibiting minimal secondary structure formation. Upon incubation with colloidal Au, hybridization complexes containing the WNV target sequence, a complementary capture oligonucleotide conjugated to a strong tethering group and a complementary reporter oligonucleotide conjugated to methylene blue (MB), a Raman label, anchors the resultant ternary complex to Au nanoparticles and positions MB within the required sensing distance for SERS enhancement. The subsequent elicitation of surface enhanced plasmon resonance by laser excitation provides a spectral peak signature profile that is capture-specific and characteristic of the Raman spectrum for MB. Detection sensitivity is in the submicromolar range and was shown to be highest for thiol, and less so for amino, modifications at the 5′ terminus of the capture oligonucleotide. Finally, using Quartz Crystal Microbalance-Dissipation as a tool for modeling ternary complex binding to Au surfaces, quantitative measurements of surface mass coverage on Au plated sensor crystals established a positive correlation between levels of ternary complex adsorption and their correspondent levels of SERS signal intensification. Adapted to a compact Raman spectrometer, which is designed for analyte detection in capillary tubes, this assay provides a rapid, mobile and cost effective alternative to expensive spectroscopic instrumentation, which is often restricted to analytical laboratories.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>19740646</pmid><doi>10.1016/j.bios.2009.05.020</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2009-12, Vol.25 (4), p.674-681
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_35044855
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Biological and medical sciences
Biosensing Techniques - methods
Biotechnology
DNA
DNA, Viral - analysis
Fundamental and applied biological sciences. Psychology
Gold Colloid - chemistry
Indirect nucleic acid capture
Methylene Blue
Quartz crystal microbalance-dissipation
Spectrum Analysis, Raman - methods
Staining and Labeling - methods
Surface enhanced Raman scattering
West Nile Virus
title SERS detection of indirect viral DNA capture using colloidal gold and methylene blue as a Raman label
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SERS%20detection%20of%20indirect%20viral%20DNA%20capture%20using%20colloidal%20gold%20and%20methylene%20blue%20as%20a%20Raman%20label&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Harpster,%20Mark%20H.&rft.date=2009-12-15&rft.volume=25&rft.issue=4&rft.spage=674&rft.epage=681&rft.pages=674-681&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2009.05.020&rft_dat=%3Cproquest_cross%3E21164825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21164825&rft_id=info:pmid/19740646&rft_els_id=S0956566309002917&rfr_iscdi=true