Optimization of Comb-Driven Devices for Mechanical Testing of Polymeric Nanofibers Subjected to Large Deformations

Comb-driven electrostatic actuators applied to mechanical testing of nanostructures are usually designed by a ldquobrute-forcerdquo approach for maximum electrostatic-force output, which results in limited actuation range. This issue is more prevalent when testing soft nanofibers with large ductilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2009-10, Vol.18 (5), p.1032-1046
Hauptverfasser: Naraghi, M., Chasiotis, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1046
container_issue 5
container_start_page 1032
container_title Journal of microelectromechanical systems
container_volume 18
creator Naraghi, M.
Chasiotis, I.
description Comb-driven electrostatic actuators applied to mechanical testing of nanostructures are usually designed by a ldquobrute-forcerdquo approach for maximum electrostatic-force output, which results in limited actuation range. This issue is more prevalent when testing soft nanofibers with large ductility. In this paper, the design considerations for a comb-driven platform for nanoscale mechanical testing of ductile nanofibers subjected to 50%, or larger, inelastic extensions are presented. The optimization carried out aimed at increasing the net-force output by comb drives with clamped-clamped tethers, which also improves on the accuracy in the calculation of the force that is applied onto the nanofiber specimens. At large actuator motions, tethers of low bending stiffness increased the net force applied to a nanofiber and provided better accuracy in the calculation of the applied force. On the contrary, at small actuator motions, the maximum net-force output by the comb drives increased with the axial tether stiffness due to the associated increase in the pull-in-instability voltage. The fabricated surface-micromachined devices enabled experiments with individual electrospun polyacrylonitrile nanofibers at a maximum force of 30 muN and extensions up to 60%. The force output calculated from the voltage input to the electrostatic devices was compared to direct measurements by an independent optical method. [2008-0252]
doi_str_mv 10.1109/JMEMS.2009.2026944
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_35032196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5208344</ieee_id><sourcerecordid>1671439102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-3d6c49e814d2b34b7fd02f704c0f05b7f3a5290a9bd3a28fc70696c993c231303</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEEqX0D9CLxaHikjL-THxEu-VLu7RSy9lynHHrVRJv7Wyl8uvxdisOHBCX8Vh-3nfGeqvqHYVzSkF__L6-WF-fMwBdClNaiBfVEdWC1kBl-7L0IJu6obJ5Xb3JeQNAhWjVUZUut3MYwy87hziR6Mkijl29TOEBJ7LEh-AwEx8TWaO7s1NwdiA3mOcw3e7pqzg8jpiCIz_sFH3oMGVyves26GbsyRzJyqZbLE7FY3wakt9Wr7wdMp48n8fVz88XN4uv9eryy7fFp1XtuKZzzXvlhMaWip51XHSN74H5BoQDD7JcuZVMg9Vdzy1rvWtAaeW05o5xyoEfV2cH322K97uysxlDdjgMdsK4y4ZL4IxqVcAP_wSpaqgoOwH7L5QJydUeff8Xuom7NJUfG00ZV7IFWSB2gFyKOSf0ZpvCaNOjoWD2yZqnZM0-WfOcbBGdHkQBEf8IJIOWl9ff8pCeog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912365805</pqid></control><display><type>article</type><title>Optimization of Comb-Driven Devices for Mechanical Testing of Polymeric Nanofibers Subjected to Large Deformations</title><source>IEEE Electronic Library (IEL)</source><creator>Naraghi, M. ; Chasiotis, I.</creator><creatorcontrib>Naraghi, M. ; Chasiotis, I.</creatorcontrib><description>Comb-driven electrostatic actuators applied to mechanical testing of nanostructures are usually designed by a ldquobrute-forcerdquo approach for maximum electrostatic-force output, which results in limited actuation range. This issue is more prevalent when testing soft nanofibers with large ductility. In this paper, the design considerations for a comb-driven platform for nanoscale mechanical testing of ductile nanofibers subjected to 50%, or larger, inelastic extensions are presented. The optimization carried out aimed at increasing the net-force output by comb drives with clamped-clamped tethers, which also improves on the accuracy in the calculation of the force that is applied onto the nanofiber specimens. At large actuator motions, tethers of low bending stiffness increased the net force applied to a nanofiber and provided better accuracy in the calculation of the applied force. On the contrary, at small actuator motions, the maximum net-force output by the comb drives increased with the axial tether stiffness due to the associated increase in the pull-in-instability voltage. The fabricated surface-micromachined devices enabled experiments with individual electrospun polyacrylonitrile nanofibers at a maximum force of 30 muN and extensions up to 60%. The force output calculated from the voltage input to the electrostatic devices was compared to direct measurements by an independent optical method. [2008-0252]</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2009.2026944</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Actuators ; Devices ; Electric potential ; Electrostatic actuators ; Electrostatic devices ; Electrostatic measurements ; Force measurement ; Mathematical analysis ; Measurement ; Mechanical testing ; Metallurgy ; microelectromechanical devices ; Nanofibers ; Nanoscale devices ; Nanostructure ; Nanostructures ; Optimization ; Polymers ; Testing ; Tethers ; Voltage</subject><ispartof>Journal of microelectromechanical systems, 2009-10, Vol.18 (5), p.1032-1046</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-3d6c49e814d2b34b7fd02f704c0f05b7f3a5290a9bd3a28fc70696c993c231303</citedby><cites>FETCH-LOGICAL-c391t-3d6c49e814d2b34b7fd02f704c0f05b7f3a5290a9bd3a28fc70696c993c231303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5208344$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5208344$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Naraghi, M.</creatorcontrib><creatorcontrib>Chasiotis, I.</creatorcontrib><title>Optimization of Comb-Driven Devices for Mechanical Testing of Polymeric Nanofibers Subjected to Large Deformations</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Comb-driven electrostatic actuators applied to mechanical testing of nanostructures are usually designed by a ldquobrute-forcerdquo approach for maximum electrostatic-force output, which results in limited actuation range. This issue is more prevalent when testing soft nanofibers with large ductility. In this paper, the design considerations for a comb-driven platform for nanoscale mechanical testing of ductile nanofibers subjected to 50%, or larger, inelastic extensions are presented. The optimization carried out aimed at increasing the net-force output by comb drives with clamped-clamped tethers, which also improves on the accuracy in the calculation of the force that is applied onto the nanofiber specimens. At large actuator motions, tethers of low bending stiffness increased the net force applied to a nanofiber and provided better accuracy in the calculation of the applied force. On the contrary, at small actuator motions, the maximum net-force output by the comb drives increased with the axial tether stiffness due to the associated increase in the pull-in-instability voltage. The fabricated surface-micromachined devices enabled experiments with individual electrospun polyacrylonitrile nanofibers at a maximum force of 30 muN and extensions up to 60%. The force output calculated from the voltage input to the electrostatic devices was compared to direct measurements by an independent optical method. [2008-0252]</description><subject>Accuracy</subject><subject>Actuators</subject><subject>Devices</subject><subject>Electric potential</subject><subject>Electrostatic actuators</subject><subject>Electrostatic devices</subject><subject>Electrostatic measurements</subject><subject>Force measurement</subject><subject>Mathematical analysis</subject><subject>Measurement</subject><subject>Mechanical testing</subject><subject>Metallurgy</subject><subject>microelectromechanical devices</subject><subject>Nanofibers</subject><subject>Nanoscale devices</subject><subject>Nanostructure</subject><subject>Nanostructures</subject><subject>Optimization</subject><subject>Polymers</subject><subject>Testing</subject><subject>Tethers</subject><subject>Voltage</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU1v1DAQhiMEEqX0D9CLxaHikjL-THxEu-VLu7RSy9lynHHrVRJv7Wyl8uvxdisOHBCX8Vh-3nfGeqvqHYVzSkF__L6-WF-fMwBdClNaiBfVEdWC1kBl-7L0IJu6obJ5Xb3JeQNAhWjVUZUut3MYwy87hziR6Mkijl29TOEBJ7LEh-AwEx8TWaO7s1NwdiA3mOcw3e7pqzg8jpiCIz_sFH3oMGVyves26GbsyRzJyqZbLE7FY3wakt9Wr7wdMp48n8fVz88XN4uv9eryy7fFp1XtuKZzzXvlhMaWip51XHSN74H5BoQDD7JcuZVMg9Vdzy1rvWtAaeW05o5xyoEfV2cH322K97uysxlDdjgMdsK4y4ZL4IxqVcAP_wSpaqgoOwH7L5QJydUeff8Xuom7NJUfG00ZV7IFWSB2gFyKOSf0ZpvCaNOjoWD2yZqnZM0-WfOcbBGdHkQBEf8IJIOWl9ff8pCeog</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Naraghi, M.</creator><creator>Chasiotis, I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20091001</creationdate><title>Optimization of Comb-Driven Devices for Mechanical Testing of Polymeric Nanofibers Subjected to Large Deformations</title><author>Naraghi, M. ; Chasiotis, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-3d6c49e814d2b34b7fd02f704c0f05b7f3a5290a9bd3a28fc70696c993c231303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Actuators</topic><topic>Devices</topic><topic>Electric potential</topic><topic>Electrostatic actuators</topic><topic>Electrostatic devices</topic><topic>Electrostatic measurements</topic><topic>Force measurement</topic><topic>Mathematical analysis</topic><topic>Measurement</topic><topic>Mechanical testing</topic><topic>Metallurgy</topic><topic>microelectromechanical devices</topic><topic>Nanofibers</topic><topic>Nanoscale devices</topic><topic>Nanostructure</topic><topic>Nanostructures</topic><topic>Optimization</topic><topic>Polymers</topic><topic>Testing</topic><topic>Tethers</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naraghi, M.</creatorcontrib><creatorcontrib>Chasiotis, I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Naraghi, M.</au><au>Chasiotis, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Comb-Driven Devices for Mechanical Testing of Polymeric Nanofibers Subjected to Large Deformations</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>18</volume><issue>5</issue><spage>1032</spage><epage>1046</epage><pages>1032-1046</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Comb-driven electrostatic actuators applied to mechanical testing of nanostructures are usually designed by a ldquobrute-forcerdquo approach for maximum electrostatic-force output, which results in limited actuation range. This issue is more prevalent when testing soft nanofibers with large ductility. In this paper, the design considerations for a comb-driven platform for nanoscale mechanical testing of ductile nanofibers subjected to 50%, or larger, inelastic extensions are presented. The optimization carried out aimed at increasing the net-force output by comb drives with clamped-clamped tethers, which also improves on the accuracy in the calculation of the force that is applied onto the nanofiber specimens. At large actuator motions, tethers of low bending stiffness increased the net force applied to a nanofiber and provided better accuracy in the calculation of the applied force. On the contrary, at small actuator motions, the maximum net-force output by the comb drives increased with the axial tether stiffness due to the associated increase in the pull-in-instability voltage. The fabricated surface-micromachined devices enabled experiments with individual electrospun polyacrylonitrile nanofibers at a maximum force of 30 muN and extensions up to 60%. The force output calculated from the voltage input to the electrostatic devices was compared to direct measurements by an independent optical method. [2008-0252]</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2009.2026944</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2009-10, Vol.18 (5), p.1032-1046
issn 1057-7157
1941-0158
language eng
recordid cdi_proquest_miscellaneous_35032196
source IEEE Electronic Library (IEL)
subjects Accuracy
Actuators
Devices
Electric potential
Electrostatic actuators
Electrostatic devices
Electrostatic measurements
Force measurement
Mathematical analysis
Measurement
Mechanical testing
Metallurgy
microelectromechanical devices
Nanofibers
Nanoscale devices
Nanostructure
Nanostructures
Optimization
Polymers
Testing
Tethers
Voltage
title Optimization of Comb-Driven Devices for Mechanical Testing of Polymeric Nanofibers Subjected to Large Deformations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Comb-Driven%20Devices%20for%20Mechanical%20Testing%20of%20Polymeric%20Nanofibers%20Subjected%20to%20Large%20Deformations&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Naraghi,%20M.&rft.date=2009-10-01&rft.volume=18&rft.issue=5&rft.spage=1032&rft.epage=1046&rft.pages=1032-1046&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2009.2026944&rft_dat=%3Cproquest_RIE%3E1671439102%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912365805&rft_id=info:pmid/&rft_ieee_id=5208344&rfr_iscdi=true