Pollen percentages, tree abundances and the Fagerlind effect

Pollen diagrams traditionally are read as if pollen percentages were linearly related to relative tree abundances, although the slopes and intercepts of these relationships are accepted to differ among taxa. Corresponding map patterns of modern pollen and tree percentages support this assumption of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of quaternary science 1986, Vol.1 (1), p.35-43
Hauptverfasser: Prentice, I. C., Webb III, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue 1
container_start_page 35
container_title Journal of quaternary science
container_volume 1
creator Prentice, I. C.
Webb III, T.
description Pollen diagrams traditionally are read as if pollen percentages were linearly related to relative tree abundances, although the slopes and intercepts of these relationships are accepted to differ among taxa. Corresponding map patterns of modern pollen and tree percentages support this assumption of linearity, which also underlies the use of linear regression on percentage data for pollen‐tree calibration. Fagerlind, however, showed that the theoretical relationship need not be linear and may be confounded by interdependencies among taxa. Regressions and scatter plots of modern pollen and tree percentages are here compared with results of extended R‐value (ERV) models, which correct for the ‘Fagerlind effect’. Three data sets from Wisconsin and Michigan, USA illustrate that regression coefficients provide a first approximation to their ERV equivalents, but scatter plots derived from the ERV analyses show reduced scatter about linearised relationships.
doi_str_mv 10.1002/jqs.3390010105
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35016938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21201454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3685-9897be36dba3701abdc7ffca4673b309214a30cc098bc1bb96c152a6707171e93</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMmdiIuUuTuxYYkGIlo-KDwGim-U4F0hJ09ZOBf33BAWBmKobTqf3fW54GDtEGCBAdDJd-gHnCgDbSbZYD0GpEGOU26wHkZBhilLtsj3vpwBtJqDHTu_nVUV1sCBnqW7MK_njoHFEgclWdW5qSz4wdR40bxQM29hVZXtRUZBt9tlOYSpPBz-7z56HF0_nl-H4bnR1fjYOLRdpEqpUyYy4yDPDJaDJciuLwppYSJ5xUBHGhoO1oNLMYpYpYTGJjJAgUSIp3mdH3d-Fmy9X5Bs9K72lqjI1zVde8wRQKJ5uLEYYAcZJ3BYHXdG6ufeOCr1w5cy4tUbQ3zZ1a1P_2WwB1QEfZUXrDW19_fD4jw07tvQNff6yxr3r1oBM9MvtSCs5vpmoCWjFvwDF5YZ5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21201454</pqid></control><display><type>article</type><title>Pollen percentages, tree abundances and the Fagerlind effect</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Prentice, I. C. ; Webb III, T.</creator><creatorcontrib>Prentice, I. C. ; Webb III, T.</creatorcontrib><description>Pollen diagrams traditionally are read as if pollen percentages were linearly related to relative tree abundances, although the slopes and intercepts of these relationships are accepted to differ among taxa. Corresponding map patterns of modern pollen and tree percentages support this assumption of linearity, which also underlies the use of linear regression on percentage data for pollen‐tree calibration. Fagerlind, however, showed that the theoretical relationship need not be linear and may be confounded by interdependencies among taxa. Regressions and scatter plots of modern pollen and tree percentages are here compared with results of extended R‐value (ERV) models, which correct for the ‘Fagerlind effect’. Three data sets from Wisconsin and Michigan, USA illustrate that regression coefficients provide a first approximation to their ERV equivalents, but scatter plots derived from the ERV analyses show reduced scatter about linearised relationships.</description><identifier>ISSN: 0267-8179</identifier><identifier>EISSN: 1099-1417</identifier><identifier>DOI: 10.1002/jqs.3390010105</identifier><language>eng</language><publisher>Essex: John Wiley &amp; Sons, Ltd</publisher><subject>forest composition ; maximum likelihood ; Palynology ; R-values ; regression</subject><ispartof>Journal of quaternary science, 1986, Vol.1 (1), p.35-43</ispartof><rights>Copyright © 1986 John Wiley &amp; Sons, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3685-9897be36dba3701abdc7ffca4673b309214a30cc098bc1bb96c152a6707171e93</citedby><cites>FETCH-LOGICAL-c3685-9897be36dba3701abdc7ffca4673b309214a30cc098bc1bb96c152a6707171e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjqs.3390010105$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjqs.3390010105$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,4010,27904,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Prentice, I. C.</creatorcontrib><creatorcontrib>Webb III, T.</creatorcontrib><title>Pollen percentages, tree abundances and the Fagerlind effect</title><title>Journal of quaternary science</title><addtitle>J. Quaternary Sci</addtitle><description>Pollen diagrams traditionally are read as if pollen percentages were linearly related to relative tree abundances, although the slopes and intercepts of these relationships are accepted to differ among taxa. Corresponding map patterns of modern pollen and tree percentages support this assumption of linearity, which also underlies the use of linear regression on percentage data for pollen‐tree calibration. Fagerlind, however, showed that the theoretical relationship need not be linear and may be confounded by interdependencies among taxa. Regressions and scatter plots of modern pollen and tree percentages are here compared with results of extended R‐value (ERV) models, which correct for the ‘Fagerlind effect’. Three data sets from Wisconsin and Michigan, USA illustrate that regression coefficients provide a first approximation to their ERV equivalents, but scatter plots derived from the ERV analyses show reduced scatter about linearised relationships.</description><subject>forest composition</subject><subject>maximum likelihood</subject><subject>Palynology</subject><subject>R-values</subject><subject>regression</subject><issn>0267-8179</issn><issn>1099-1417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMmdiIuUuTuxYYkGIlo-KDwGim-U4F0hJ09ZOBf33BAWBmKobTqf3fW54GDtEGCBAdDJd-gHnCgDbSbZYD0GpEGOU26wHkZBhilLtsj3vpwBtJqDHTu_nVUV1sCBnqW7MK_njoHFEgclWdW5qSz4wdR40bxQM29hVZXtRUZBt9tlOYSpPBz-7z56HF0_nl-H4bnR1fjYOLRdpEqpUyYy4yDPDJaDJciuLwppYSJ5xUBHGhoO1oNLMYpYpYTGJjJAgUSIp3mdH3d-Fmy9X5Bs9K72lqjI1zVde8wRQKJ5uLEYYAcZJ3BYHXdG6ufeOCr1w5cy4tUbQ3zZ1a1P_2WwB1QEfZUXrDW19_fD4jw07tvQNff6yxr3r1oBM9MvtSCs5vpmoCWjFvwDF5YZ5</recordid><startdate>1986</startdate><enddate>1986</enddate><creator>Prentice, I. C.</creator><creator>Webb III, T.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>1986</creationdate><title>Pollen percentages, tree abundances and the Fagerlind effect</title><author>Prentice, I. C. ; Webb III, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3685-9897be36dba3701abdc7ffca4673b309214a30cc098bc1bb96c152a6707171e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>forest composition</topic><topic>maximum likelihood</topic><topic>Palynology</topic><topic>R-values</topic><topic>regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prentice, I. C.</creatorcontrib><creatorcontrib>Webb III, T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of quaternary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prentice, I. C.</au><au>Webb III, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pollen percentages, tree abundances and the Fagerlind effect</atitle><jtitle>Journal of quaternary science</jtitle><addtitle>J. Quaternary Sci</addtitle><date>1986</date><risdate>1986</risdate><volume>1</volume><issue>1</issue><spage>35</spage><epage>43</epage><pages>35-43</pages><issn>0267-8179</issn><eissn>1099-1417</eissn><abstract>Pollen diagrams traditionally are read as if pollen percentages were linearly related to relative tree abundances, although the slopes and intercepts of these relationships are accepted to differ among taxa. Corresponding map patterns of modern pollen and tree percentages support this assumption of linearity, which also underlies the use of linear regression on percentage data for pollen‐tree calibration. Fagerlind, however, showed that the theoretical relationship need not be linear and may be confounded by interdependencies among taxa. Regressions and scatter plots of modern pollen and tree percentages are here compared with results of extended R‐value (ERV) models, which correct for the ‘Fagerlind effect’. Three data sets from Wisconsin and Michigan, USA illustrate that regression coefficients provide a first approximation to their ERV equivalents, but scatter plots derived from the ERV analyses show reduced scatter about linearised relationships.</abstract><cop>Essex</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jqs.3390010105</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0267-8179
ispartof Journal of quaternary science, 1986, Vol.1 (1), p.35-43
issn 0267-8179
1099-1417
language eng
recordid cdi_proquest_miscellaneous_35016938
source Wiley Online Library Journals Frontfile Complete
subjects forest composition
maximum likelihood
Palynology
R-values
regression
title Pollen percentages, tree abundances and the Fagerlind effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pollen%20percentages,%20tree%20abundances%20and%20the%20Fagerlind%20effect&rft.jtitle=Journal%20of%20quaternary%20science&rft.au=Prentice,%20I.%20C.&rft.date=1986&rft.volume=1&rft.issue=1&rft.spage=35&rft.epage=43&rft.pages=35-43&rft.issn=0267-8179&rft.eissn=1099-1417&rft_id=info:doi/10.1002/jqs.3390010105&rft_dat=%3Cproquest_cross%3E21201454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21201454&rft_id=info:pmid/&rfr_iscdi=true