Numerical Modeling of Single-wall Carbon Nanotubes Electromechanical Coupling Effects Using Nanoscale Models
Macroscopic electrical properties of carbon nanotubes are determined by their atomic and electronic structure. The analysis involves three interconnected phases. The Tight-Binding Approximation theory is first employed to predict the electronic band structure of the nanotube. Effects of nanotube wal...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent material systems and structures 2009-09, Vol.20 (14), p.1649-1661 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1661 |
---|---|
container_issue | 14 |
container_start_page | 1649 |
container_title | Journal of intelligent material systems and structures |
container_volume | 20 |
creator | Theodosiou, T.C. Saravanos, D.A. |
description | Macroscopic electrical properties of carbon nanotubes are determined by their atomic and electronic structure. The analysis involves three interconnected phases. The Tight-Binding Approximation theory is first employed to predict the electronic band structure of the nanotube. Effects of nanotube wall curvature and the presence of an external electric field are included in the formulation. Subsequently the nanotube electrical resistance is calculated using the Wentzel—Kramers—Brillouin and Miller—Good approximations. The coupling effects between mechanical deformation and electrical resistance variations of a carbon nanotube are finally modeled. Numerical results illustrate the sensitivity of the band gap and the electrical resistance to nanotube configuration, and induced axial and torsional strain. The influence of wall curvature and an externally applied electric field on the tube resistance are also illustrated. Finally the differences in the prediction of electric resistance obtained by the Wentzel—Kramers—Brillouin and Miller—Good approximations are also shown. |
doi_str_mv | 10.1177/1045389X09340706 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35008916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1045389X09340706</sage_id><sourcerecordid>35008916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-3d4119db0725b7d0bac998079c37a344d892a528a6ba5bf347142fcd1df92da43</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxSMEEqWwM2aBLXCOnQ-PKCofUikDVGKLLo5dUjlxsRMh_nucpmJAYro7vfd70rsguCRwQ0iW3RJgCc35O3DKIIP0KJiRhEKUE5of-93L0aifBmfObQFIngCdBXo1tNI2AnX4bGqpm24TGhW--qll9IVahwXaynThCjvTD5V04UJL0VvTSvGB3R4tzLDbowulvObCtRuvEXFel1O2Ow9OFGonLw5zHqzvF2_FY7R8eXgq7paRoCzuI1ozQnhdQRYnVVZDhYLzHDIuaIaUsTrnMSZxjmmFSaUoywiLlahJrXhcI6Pz4HrK3VnzOUjXl23jhNQaO2kGV9IEIOck9UaYjMIa56xU5c42LdrvkkA5vrX8-1aPXB2ycaymLHaicb9cTDgnkBLviyafw40st2awna_8f-4PngaFeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35008916</pqid></control><display><type>article</type><title>Numerical Modeling of Single-wall Carbon Nanotubes Electromechanical Coupling Effects Using Nanoscale Models</title><source>SAGE Journals</source><creator>Theodosiou, T.C. ; Saravanos, D.A.</creator><creatorcontrib>Theodosiou, T.C. ; Saravanos, D.A.</creatorcontrib><description>Macroscopic electrical properties of carbon nanotubes are determined by their atomic and electronic structure. The analysis involves three interconnected phases. The Tight-Binding Approximation theory is first employed to predict the electronic band structure of the nanotube. Effects of nanotube wall curvature and the presence of an external electric field are included in the formulation. Subsequently the nanotube electrical resistance is calculated using the Wentzel—Kramers—Brillouin and Miller—Good approximations. The coupling effects between mechanical deformation and electrical resistance variations of a carbon nanotube are finally modeled. Numerical results illustrate the sensitivity of the band gap and the electrical resistance to nanotube configuration, and induced axial and torsional strain. The influence of wall curvature and an externally applied electric field on the tube resistance are also illustrated. Finally the differences in the prediction of electric resistance obtained by the Wentzel—Kramers—Brillouin and Miller—Good approximations are also shown.</description><identifier>ISSN: 1045-389X</identifier><identifier>EISSN: 1530-8138</identifier><identifier>DOI: 10.1177/1045389X09340706</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Physics</subject><ispartof>Journal of intelligent material systems and structures, 2009-09, Vol.20 (14), p.1649-1661</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-3d4119db0725b7d0bac998079c37a344d892a528a6ba5bf347142fcd1df92da43</citedby><cites>FETCH-LOGICAL-c342t-3d4119db0725b7d0bac998079c37a344d892a528a6ba5bf347142fcd1df92da43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1045389X09340706$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1045389X09340706$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21991061$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Theodosiou, T.C.</creatorcontrib><creatorcontrib>Saravanos, D.A.</creatorcontrib><title>Numerical Modeling of Single-wall Carbon Nanotubes Electromechanical Coupling Effects Using Nanoscale Models</title><title>Journal of intelligent material systems and structures</title><description>Macroscopic electrical properties of carbon nanotubes are determined by their atomic and electronic structure. The analysis involves three interconnected phases. The Tight-Binding Approximation theory is first employed to predict the electronic band structure of the nanotube. Effects of nanotube wall curvature and the presence of an external electric field are included in the formulation. Subsequently the nanotube electrical resistance is calculated using the Wentzel—Kramers—Brillouin and Miller—Good approximations. The coupling effects between mechanical deformation and electrical resistance variations of a carbon nanotube are finally modeled. Numerical results illustrate the sensitivity of the band gap and the electrical resistance to nanotube configuration, and induced axial and torsional strain. The influence of wall curvature and an externally applied electric field on the tube resistance are also illustrated. Finally the differences in the prediction of electric resistance obtained by the Wentzel—Kramers—Brillouin and Miller—Good approximations are also shown.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><issn>1045-389X</issn><issn>1530-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxSMEEqWwM2aBLXCOnQ-PKCofUikDVGKLLo5dUjlxsRMh_nucpmJAYro7vfd70rsguCRwQ0iW3RJgCc35O3DKIIP0KJiRhEKUE5of-93L0aifBmfObQFIngCdBXo1tNI2AnX4bGqpm24TGhW--qll9IVahwXaynThCjvTD5V04UJL0VvTSvGB3R4tzLDbowulvObCtRuvEXFel1O2Ow9OFGonLw5zHqzvF2_FY7R8eXgq7paRoCzuI1ozQnhdQRYnVVZDhYLzHDIuaIaUsTrnMSZxjmmFSaUoywiLlahJrXhcI6Pz4HrK3VnzOUjXl23jhNQaO2kGV9IEIOck9UaYjMIa56xU5c42LdrvkkA5vrX8-1aPXB2ycaymLHaicb9cTDgnkBLviyafw40st2awna_8f-4PngaFeg</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Theodosiou, T.C.</creator><creator>Saravanos, D.A.</creator><general>SAGE Publications</general><general>Sage Publications</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20090901</creationdate><title>Numerical Modeling of Single-wall Carbon Nanotubes Electromechanical Coupling Effects Using Nanoscale Models</title><author>Theodosiou, T.C. ; Saravanos, D.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-3d4119db0725b7d0bac998079c37a344d892a528a6ba5bf347142fcd1df92da43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theodosiou, T.C.</creatorcontrib><creatorcontrib>Saravanos, D.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of intelligent material systems and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theodosiou, T.C.</au><au>Saravanos, D.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Modeling of Single-wall Carbon Nanotubes Electromechanical Coupling Effects Using Nanoscale Models</atitle><jtitle>Journal of intelligent material systems and structures</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>20</volume><issue>14</issue><spage>1649</spage><epage>1661</epage><pages>1649-1661</pages><issn>1045-389X</issn><eissn>1530-8138</eissn><abstract>Macroscopic electrical properties of carbon nanotubes are determined by their atomic and electronic structure. The analysis involves three interconnected phases. The Tight-Binding Approximation theory is first employed to predict the electronic band structure of the nanotube. Effects of nanotube wall curvature and the presence of an external electric field are included in the formulation. Subsequently the nanotube electrical resistance is calculated using the Wentzel—Kramers—Brillouin and Miller—Good approximations. The coupling effects between mechanical deformation and electrical resistance variations of a carbon nanotube are finally modeled. Numerical results illustrate the sensitivity of the band gap and the electrical resistance to nanotube configuration, and induced axial and torsional strain. The influence of wall curvature and an externally applied electric field on the tube resistance are also illustrated. Finally the differences in the prediction of electric resistance obtained by the Wentzel—Kramers—Brillouin and Miller—Good approximations are also shown.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1045389X09340706</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-389X |
ispartof | Journal of intelligent material systems and structures, 2009-09, Vol.20 (14), p.1649-1661 |
issn | 1045-389X 1530-8138 |
language | eng |
recordid | cdi_proquest_miscellaneous_35008916 |
source | SAGE Journals |
subjects | Cross-disciplinary physics: materials science rheology Exact sciences and technology Materials science Nanoscale materials and structures: fabrication and characterization Physics |
title | Numerical Modeling of Single-wall Carbon Nanotubes Electromechanical Coupling Effects Using Nanoscale Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Modeling%20of%20Single-wall%20Carbon%20Nanotubes%20Electromechanical%20Coupling%20Effects%20Using%20Nanoscale%20Models&rft.jtitle=Journal%20of%20intelligent%20material%20systems%20and%20structures&rft.au=Theodosiou,%20T.C.&rft.date=2009-09-01&rft.volume=20&rft.issue=14&rft.spage=1649&rft.epage=1661&rft.pages=1649-1661&rft.issn=1045-389X&rft.eissn=1530-8138&rft_id=info:doi/10.1177/1045389X09340706&rft_dat=%3Cproquest_cross%3E35008916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35008916&rft_id=info:pmid/&rft_sage_id=10.1177_1045389X09340706&rfr_iscdi=true |