Numerical Modeling of Single-wall Carbon Nanotubes Electromechanical Coupling Effects Using Nanoscale Models

Macroscopic electrical properties of carbon nanotubes are determined by their atomic and electronic structure. The analysis involves three interconnected phases. The Tight-Binding Approximation theory is first employed to predict the electronic band structure of the nanotube. Effects of nanotube wal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent material systems and structures 2009-09, Vol.20 (14), p.1649-1661
Hauptverfasser: Theodosiou, T.C., Saravanos, D.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1661
container_issue 14
container_start_page 1649
container_title Journal of intelligent material systems and structures
container_volume 20
creator Theodosiou, T.C.
Saravanos, D.A.
description Macroscopic electrical properties of carbon nanotubes are determined by their atomic and electronic structure. The analysis involves three interconnected phases. The Tight-Binding Approximation theory is first employed to predict the electronic band structure of the nanotube. Effects of nanotube wall curvature and the presence of an external electric field are included in the formulation. Subsequently the nanotube electrical resistance is calculated using the Wentzel—Kramers—Brillouin and Miller—Good approximations. The coupling effects between mechanical deformation and electrical resistance variations of a carbon nanotube are finally modeled. Numerical results illustrate the sensitivity of the band gap and the electrical resistance to nanotube configuration, and induced axial and torsional strain. The influence of wall curvature and an externally applied electric field on the tube resistance are also illustrated. Finally the differences in the prediction of electric resistance obtained by the Wentzel—Kramers—Brillouin and Miller—Good approximations are also shown.
doi_str_mv 10.1177/1045389X09340706
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35008916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1045389X09340706</sage_id><sourcerecordid>35008916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-3d4119db0725b7d0bac998079c37a344d892a528a6ba5bf347142fcd1df92da43</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxSMEEqWwM2aBLXCOnQ-PKCofUikDVGKLLo5dUjlxsRMh_nucpmJAYro7vfd70rsguCRwQ0iW3RJgCc35O3DKIIP0KJiRhEKUE5of-93L0aifBmfObQFIngCdBXo1tNI2AnX4bGqpm24TGhW--qll9IVahwXaynThCjvTD5V04UJL0VvTSvGB3R4tzLDbowulvObCtRuvEXFel1O2Ow9OFGonLw5zHqzvF2_FY7R8eXgq7paRoCzuI1ozQnhdQRYnVVZDhYLzHDIuaIaUsTrnMSZxjmmFSaUoywiLlahJrXhcI6Pz4HrK3VnzOUjXl23jhNQaO2kGV9IEIOck9UaYjMIa56xU5c42LdrvkkA5vrX8-1aPXB2ycaymLHaicb9cTDgnkBLviyafw40st2awna_8f-4PngaFeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35008916</pqid></control><display><type>article</type><title>Numerical Modeling of Single-wall Carbon Nanotubes Electromechanical Coupling Effects Using Nanoscale Models</title><source>SAGE Journals</source><creator>Theodosiou, T.C. ; Saravanos, D.A.</creator><creatorcontrib>Theodosiou, T.C. ; Saravanos, D.A.</creatorcontrib><description>Macroscopic electrical properties of carbon nanotubes are determined by their atomic and electronic structure. The analysis involves three interconnected phases. The Tight-Binding Approximation theory is first employed to predict the electronic band structure of the nanotube. Effects of nanotube wall curvature and the presence of an external electric field are included in the formulation. Subsequently the nanotube electrical resistance is calculated using the Wentzel—Kramers—Brillouin and Miller—Good approximations. The coupling effects between mechanical deformation and electrical resistance variations of a carbon nanotube are finally modeled. Numerical results illustrate the sensitivity of the band gap and the electrical resistance to nanotube configuration, and induced axial and torsional strain. The influence of wall curvature and an externally applied electric field on the tube resistance are also illustrated. Finally the differences in the prediction of electric resistance obtained by the Wentzel—Kramers—Brillouin and Miller—Good approximations are also shown.</description><identifier>ISSN: 1045-389X</identifier><identifier>EISSN: 1530-8138</identifier><identifier>DOI: 10.1177/1045389X09340706</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Physics</subject><ispartof>Journal of intelligent material systems and structures, 2009-09, Vol.20 (14), p.1649-1661</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-3d4119db0725b7d0bac998079c37a344d892a528a6ba5bf347142fcd1df92da43</citedby><cites>FETCH-LOGICAL-c342t-3d4119db0725b7d0bac998079c37a344d892a528a6ba5bf347142fcd1df92da43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1045389X09340706$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1045389X09340706$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21991061$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Theodosiou, T.C.</creatorcontrib><creatorcontrib>Saravanos, D.A.</creatorcontrib><title>Numerical Modeling of Single-wall Carbon Nanotubes Electromechanical Coupling Effects Using Nanoscale Models</title><title>Journal of intelligent material systems and structures</title><description>Macroscopic electrical properties of carbon nanotubes are determined by their atomic and electronic structure. The analysis involves three interconnected phases. The Tight-Binding Approximation theory is first employed to predict the electronic band structure of the nanotube. Effects of nanotube wall curvature and the presence of an external electric field are included in the formulation. Subsequently the nanotube electrical resistance is calculated using the Wentzel—Kramers—Brillouin and Miller—Good approximations. The coupling effects between mechanical deformation and electrical resistance variations of a carbon nanotube are finally modeled. Numerical results illustrate the sensitivity of the band gap and the electrical resistance to nanotube configuration, and induced axial and torsional strain. The influence of wall curvature and an externally applied electric field on the tube resistance are also illustrated. Finally the differences in the prediction of electric resistance obtained by the Wentzel—Kramers—Brillouin and Miller—Good approximations are also shown.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><issn>1045-389X</issn><issn>1530-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxSMEEqWwM2aBLXCOnQ-PKCofUikDVGKLLo5dUjlxsRMh_nucpmJAYro7vfd70rsguCRwQ0iW3RJgCc35O3DKIIP0KJiRhEKUE5of-93L0aifBmfObQFIngCdBXo1tNI2AnX4bGqpm24TGhW--qll9IVahwXaynThCjvTD5V04UJL0VvTSvGB3R4tzLDbowulvObCtRuvEXFel1O2Ow9OFGonLw5zHqzvF2_FY7R8eXgq7paRoCzuI1ozQnhdQRYnVVZDhYLzHDIuaIaUsTrnMSZxjmmFSaUoywiLlahJrXhcI6Pz4HrK3VnzOUjXl23jhNQaO2kGV9IEIOck9UaYjMIa56xU5c42LdrvkkA5vrX8-1aPXB2ycaymLHaicb9cTDgnkBLviyafw40st2awna_8f-4PngaFeg</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Theodosiou, T.C.</creator><creator>Saravanos, D.A.</creator><general>SAGE Publications</general><general>Sage Publications</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20090901</creationdate><title>Numerical Modeling of Single-wall Carbon Nanotubes Electromechanical Coupling Effects Using Nanoscale Models</title><author>Theodosiou, T.C. ; Saravanos, D.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-3d4119db0725b7d0bac998079c37a344d892a528a6ba5bf347142fcd1df92da43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theodosiou, T.C.</creatorcontrib><creatorcontrib>Saravanos, D.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of intelligent material systems and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theodosiou, T.C.</au><au>Saravanos, D.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Modeling of Single-wall Carbon Nanotubes Electromechanical Coupling Effects Using Nanoscale Models</atitle><jtitle>Journal of intelligent material systems and structures</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>20</volume><issue>14</issue><spage>1649</spage><epage>1661</epage><pages>1649-1661</pages><issn>1045-389X</issn><eissn>1530-8138</eissn><abstract>Macroscopic electrical properties of carbon nanotubes are determined by their atomic and electronic structure. The analysis involves three interconnected phases. The Tight-Binding Approximation theory is first employed to predict the electronic band structure of the nanotube. Effects of nanotube wall curvature and the presence of an external electric field are included in the formulation. Subsequently the nanotube electrical resistance is calculated using the Wentzel—Kramers—Brillouin and Miller—Good approximations. The coupling effects between mechanical deformation and electrical resistance variations of a carbon nanotube are finally modeled. Numerical results illustrate the sensitivity of the band gap and the electrical resistance to nanotube configuration, and induced axial and torsional strain. The influence of wall curvature and an externally applied electric field on the tube resistance are also illustrated. Finally the differences in the prediction of electric resistance obtained by the Wentzel—Kramers—Brillouin and Miller—Good approximations are also shown.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1045389X09340706</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1045-389X
ispartof Journal of intelligent material systems and structures, 2009-09, Vol.20 (14), p.1649-1661
issn 1045-389X
1530-8138
language eng
recordid cdi_proquest_miscellaneous_35008916
source SAGE Journals
subjects Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials science
Nanoscale materials and structures: fabrication and characterization
Physics
title Numerical Modeling of Single-wall Carbon Nanotubes Electromechanical Coupling Effects Using Nanoscale Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Modeling%20of%20Single-wall%20Carbon%20Nanotubes%20Electromechanical%20Coupling%20Effects%20Using%20Nanoscale%20Models&rft.jtitle=Journal%20of%20intelligent%20material%20systems%20and%20structures&rft.au=Theodosiou,%20T.C.&rft.date=2009-09-01&rft.volume=20&rft.issue=14&rft.spage=1649&rft.epage=1661&rft.pages=1649-1661&rft.issn=1045-389X&rft.eissn=1530-8138&rft_id=info:doi/10.1177/1045389X09340706&rft_dat=%3Cproquest_cross%3E35008916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35008916&rft_id=info:pmid/&rft_sage_id=10.1177_1045389X09340706&rfr_iscdi=true