An alternative collocation boundary element method for static and dynamic problems

A collocation boundary element formulation is presented which is based on a mixed approximation formulation similar to the Galerkin boundary element method presented by Steinbach (SIAM J Numer Anal 38:401–413, 2000) for the solution of Laplace’s equation. The method is also applicable to vector prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2009-07, Vol.44 (2), p.247-261
Hauptverfasser: Rüberg, Thomas, Schanz, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue 2
container_start_page 247
container_title Computational mechanics
container_volume 44
creator Rüberg, Thomas
Schanz, Martin
description A collocation boundary element formulation is presented which is based on a mixed approximation formulation similar to the Galerkin boundary element method presented by Steinbach (SIAM J Numer Anal 38:401–413, 2000) for the solution of Laplace’s equation. The method is also applicable to vector problems such as elasticity. Moreover, dynamic problems of acoustics and elastodynamics are included. The resulting system matrices have an ordered structure and small condition numbers in comparison to the standard collocation approach. Moreover, the employment of Robin boundary conditions is easily included in this formulation. Details on the numerical integration of the occurring regular and singular integrals and on the solution of the arising systems of equations are given. Numerical experiments have been carried out for different reference problems. In these experiments, the presented approach is compared to the common nodal collocation method with respect to accuracy, condition numbers, and stability in the dynamic case.
doi_str_mv 10.1007/s00466-009-0369-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35006668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35006668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-fbe7c2e1eb4328bd1d0b85474d8bbf5ec077003ed046c139bcef790930464a1e3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8BwVt00qRNe1wW_8GCIHoOTTLVXdpkTbrCfnuzVBAETzMDvzcz7xFyyeGGA6jbBCCrigE0DETVMHlEZlyKgkFTyGMyA65qpipVnpKzlDYAvKxFOSMvC0_bfsTo23H9hdSGvg8298FTE3betXFPsccB_UgHHD-Co12INI2ZsbT1jrq9b4fcb2MwGUzn5KRr-4QXP3VO3u7vXpePbPX88LRcrJgVUo2sM6hsgRxNfrM2jjswdSmVdLUxXYkWlAIQ6LIxy0VjLHaqgUbkWbYcxZxcT3vz4c8dplEP62Sx71uPYZe0KAGqqqozePUH3IRdNtwnXRQVF5xLJTLFJ8rGkFLETm_jesj2NQd9yFhPGeucsT5krGXWFJMmZda_Y_zd_L_oG9WSf0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261311473</pqid></control><display><type>article</type><title>An alternative collocation boundary element method for static and dynamic problems</title><source>Springer Nature - Complete Springer Journals</source><creator>Rüberg, Thomas ; Schanz, Martin</creator><creatorcontrib>Rüberg, Thomas ; Schanz, Martin</creatorcontrib><description>A collocation boundary element formulation is presented which is based on a mixed approximation formulation similar to the Galerkin boundary element method presented by Steinbach (SIAM J Numer Anal 38:401–413, 2000) for the solution of Laplace’s equation. The method is also applicable to vector problems such as elasticity. Moreover, dynamic problems of acoustics and elastodynamics are included. The resulting system matrices have an ordered structure and small condition numbers in comparison to the standard collocation approach. Moreover, the employment of Robin boundary conditions is easily included in this formulation. Details on the numerical integration of the occurring regular and singular integrals and on the solution of the arising systems of equations are given. Numerical experiments have been carried out for different reference problems. In these experiments, the presented approach is compared to the common nodal collocation method with respect to accuracy, condition numbers, and stability in the dynamic case.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-009-0369-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Acoustics ; Boundary conditions ; Boundary element method ; Classical and Continuum Physics ; Collocation methods ; Computational Science and Engineering ; Dynamic stability ; Elasticity ; Elastodynamics ; Engineering ; Galerkin method ; Mathematical analysis ; Nonlinear programming ; Numerical integration ; Original Paper ; Theoretical and Applied Mechanics</subject><ispartof>Computational mechanics, 2009-07, Vol.44 (2), p.247-261</ispartof><rights>Springer-Verlag 2009</rights><rights>Computational Mechanics is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-fbe7c2e1eb4328bd1d0b85474d8bbf5ec077003ed046c139bcef790930464a1e3</citedby><cites>FETCH-LOGICAL-c347t-fbe7c2e1eb4328bd1d0b85474d8bbf5ec077003ed046c139bcef790930464a1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-009-0369-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-009-0369-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Rüberg, Thomas</creatorcontrib><creatorcontrib>Schanz, Martin</creatorcontrib><title>An alternative collocation boundary element method for static and dynamic problems</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>A collocation boundary element formulation is presented which is based on a mixed approximation formulation similar to the Galerkin boundary element method presented by Steinbach (SIAM J Numer Anal 38:401–413, 2000) for the solution of Laplace’s equation. The method is also applicable to vector problems such as elasticity. Moreover, dynamic problems of acoustics and elastodynamics are included. The resulting system matrices have an ordered structure and small condition numbers in comparison to the standard collocation approach. Moreover, the employment of Robin boundary conditions is easily included in this formulation. Details on the numerical integration of the occurring regular and singular integrals and on the solution of the arising systems of equations are given. Numerical experiments have been carried out for different reference problems. In these experiments, the presented approach is compared to the common nodal collocation method with respect to accuracy, condition numbers, and stability in the dynamic case.</description><subject>Acoustics</subject><subject>Boundary conditions</subject><subject>Boundary element method</subject><subject>Classical and Continuum Physics</subject><subject>Collocation methods</subject><subject>Computational Science and Engineering</subject><subject>Dynamic stability</subject><subject>Elasticity</subject><subject>Elastodynamics</subject><subject>Engineering</subject><subject>Galerkin method</subject><subject>Mathematical analysis</subject><subject>Nonlinear programming</subject><subject>Numerical integration</subject><subject>Original Paper</subject><subject>Theoretical and Applied Mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8BwVt00qRNe1wW_8GCIHoOTTLVXdpkTbrCfnuzVBAETzMDvzcz7xFyyeGGA6jbBCCrigE0DETVMHlEZlyKgkFTyGMyA65qpipVnpKzlDYAvKxFOSMvC0_bfsTo23H9hdSGvg8298FTE3betXFPsccB_UgHHD-Co12INI2ZsbT1jrq9b4fcb2MwGUzn5KRr-4QXP3VO3u7vXpePbPX88LRcrJgVUo2sM6hsgRxNfrM2jjswdSmVdLUxXYkWlAIQ6LIxy0VjLHaqgUbkWbYcxZxcT3vz4c8dplEP62Sx71uPYZe0KAGqqqozePUH3IRdNtwnXRQVF5xLJTLFJ8rGkFLETm_jesj2NQd9yFhPGeucsT5krGXWFJMmZda_Y_zd_L_oG9WSf0M</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Rüberg, Thomas</creator><creator>Schanz, Martin</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090701</creationdate><title>An alternative collocation boundary element method for static and dynamic problems</title><author>Rüberg, Thomas ; Schanz, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-fbe7c2e1eb4328bd1d0b85474d8bbf5ec077003ed046c139bcef790930464a1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustics</topic><topic>Boundary conditions</topic><topic>Boundary element method</topic><topic>Classical and Continuum Physics</topic><topic>Collocation methods</topic><topic>Computational Science and Engineering</topic><topic>Dynamic stability</topic><topic>Elasticity</topic><topic>Elastodynamics</topic><topic>Engineering</topic><topic>Galerkin method</topic><topic>Mathematical analysis</topic><topic>Nonlinear programming</topic><topic>Numerical integration</topic><topic>Original Paper</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rüberg, Thomas</creatorcontrib><creatorcontrib>Schanz, Martin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rüberg, Thomas</au><au>Schanz, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An alternative collocation boundary element method for static and dynamic problems</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>44</volume><issue>2</issue><spage>247</spage><epage>261</epage><pages>247-261</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>A collocation boundary element formulation is presented which is based on a mixed approximation formulation similar to the Galerkin boundary element method presented by Steinbach (SIAM J Numer Anal 38:401–413, 2000) for the solution of Laplace’s equation. The method is also applicable to vector problems such as elasticity. Moreover, dynamic problems of acoustics and elastodynamics are included. The resulting system matrices have an ordered structure and small condition numbers in comparison to the standard collocation approach. Moreover, the employment of Robin boundary conditions is easily included in this formulation. Details on the numerical integration of the occurring regular and singular integrals and on the solution of the arising systems of equations are given. Numerical experiments have been carried out for different reference problems. In these experiments, the presented approach is compared to the common nodal collocation method with respect to accuracy, condition numbers, and stability in the dynamic case.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00466-009-0369-4</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2009-07, Vol.44 (2), p.247-261
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_miscellaneous_35006668
source Springer Nature - Complete Springer Journals
subjects Acoustics
Boundary conditions
Boundary element method
Classical and Continuum Physics
Collocation methods
Computational Science and Engineering
Dynamic stability
Elasticity
Elastodynamics
Engineering
Galerkin method
Mathematical analysis
Nonlinear programming
Numerical integration
Original Paper
Theoretical and Applied Mechanics
title An alternative collocation boundary element method for static and dynamic problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20alternative%20collocation%20boundary%20element%20method%20for%20static%20and%20dynamic%20problems&rft.jtitle=Computational%20mechanics&rft.au=R%C3%BCberg,%20Thomas&rft.date=2009-07-01&rft.volume=44&rft.issue=2&rft.spage=247&rft.epage=261&rft.pages=247-261&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-009-0369-4&rft_dat=%3Cproquest_cross%3E35006668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261311473&rft_id=info:pmid/&rfr_iscdi=true