Modeling of coaxial powder flow for the laser direct deposition process

The supplying powder jet conditions in a direct deposition process greatly influence the quality and property of deposition products. Coaxial powder flow provides the means of precise deposition due to its omnidirectional nature in a direct deposition process. In this paper, a comprehensive numerica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2009-12, Vol.52 (25), p.5867-5877
Hauptverfasser: Wen, S.Y., Shin, Y.C., Murthy, J.Y., Sojka, P.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5877
container_issue 25
container_start_page 5867
container_title International journal of heat and mass transfer
container_volume 52
creator Wen, S.Y.
Shin, Y.C.
Murthy, J.Y.
Sojka, P.E.
description The supplying powder jet conditions in a direct deposition process greatly influence the quality and property of deposition products. Coaxial powder flow provides the means of precise deposition due to its omnidirectional nature in a direct deposition process. In this paper, a comprehensive numerical model is presented to predict the whole process of coaxial powder flow, including the particle stream flow in and after the nozzle and laser–particle interaction process. By solving the coupled momentum transfer equations between the particle and gas phase while incorporating particle temperature evolution, the dynamic and thermal behavior of multi-particles in the stream is completely modeled. Calculated and measured results are well matched. The model is capable of predicting the powder stream structure and multi-particle phase change process with liquid fraction evolution throughout the entire process while considering the particle morphology and size distribution in real powder samples.
doi_str_mv 10.1016/j.ijheatmasstransfer.2009.07.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35006100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931009004517</els_id><sourcerecordid>35006100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-6c1022db8c0e4084ab82ea876eb84bfa230026827798b6137d57fbc2995b7c0f3</originalsourceid><addsrcrecordid>eNqNkE1r3DAQhkVpodsk_0GXlFzsjGRbkm8tofkiIZfmLGR5lGjxWluN06T_vlo29FIIOQ0zPLzv8DB2IqAWINTpuo7rR3TLxhEt2c0UMNcSoK9B1yDMB7YSRveVFKb_yFYAQld9I-Az-0K03q3QqhW7uE0jTnF-4Clwn9xLdBPfpucRMw9TeuYhZb48Ip8cldMYM_qFj7hNFJeYZr7NySPRIfsU3ER49DoP2P35j59nl9XN3cXV2febyncgl0p5AVKOg_GALZjWDUaiM1rhYNohONkASGWk1r0ZlGj02OkweNn33aA9hOaAfd3nlt5fT0iL3UTyOE1uxvREtukAlAAo4MmboJBK6VabThb02x71ORFlDHab48blP1aA3cm2a_u_bLuTbUHbIrtEHL-2OfJuCoXxkf7lSCmk6OTuq-s9h8XR71hSyEecPe7F2jHF95f-BeuZoWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266747852</pqid></control><display><type>article</type><title>Modeling of coaxial powder flow for the laser direct deposition process</title><source>Elsevier ScienceDirect Journals</source><creator>Wen, S.Y. ; Shin, Y.C. ; Murthy, J.Y. ; Sojka, P.E.</creator><creatorcontrib>Wen, S.Y. ; Shin, Y.C. ; Murthy, J.Y. ; Sojka, P.E.</creatorcontrib><description>The supplying powder jet conditions in a direct deposition process greatly influence the quality and property of deposition products. Coaxial powder flow provides the means of precise deposition due to its omnidirectional nature in a direct deposition process. In this paper, a comprehensive numerical model is presented to predict the whole process of coaxial powder flow, including the particle stream flow in and after the nozzle and laser–particle interaction process. By solving the coupled momentum transfer equations between the particle and gas phase while incorporating particle temperature evolution, the dynamic and thermal behavior of multi-particles in the stream is completely modeled. Calculated and measured results are well matched. The model is capable of predicting the powder stream structure and multi-particle phase change process with liquid fraction evolution throughout the entire process while considering the particle morphology and size distribution in real powder samples.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2009.07.018</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Coaxial powder flow ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Laser deposition ; Laser direct deposition ; Laser heating ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Numerical modeling ; Physics</subject><ispartof>International journal of heat and mass transfer, 2009-12, Vol.52 (25), p.5867-5877</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-6c1022db8c0e4084ab82ea876eb84bfa230026827798b6137d57fbc2995b7c0f3</citedby><cites>FETCH-LOGICAL-c502t-6c1022db8c0e4084ab82ea876eb84bfa230026827798b6137d57fbc2995b7c0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931009004517$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22121520$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, S.Y.</creatorcontrib><creatorcontrib>Shin, Y.C.</creatorcontrib><creatorcontrib>Murthy, J.Y.</creatorcontrib><creatorcontrib>Sojka, P.E.</creatorcontrib><title>Modeling of coaxial powder flow for the laser direct deposition process</title><title>International journal of heat and mass transfer</title><description>The supplying powder jet conditions in a direct deposition process greatly influence the quality and property of deposition products. Coaxial powder flow provides the means of precise deposition due to its omnidirectional nature in a direct deposition process. In this paper, a comprehensive numerical model is presented to predict the whole process of coaxial powder flow, including the particle stream flow in and after the nozzle and laser–particle interaction process. By solving the coupled momentum transfer equations between the particle and gas phase while incorporating particle temperature evolution, the dynamic and thermal behavior of multi-particles in the stream is completely modeled. Calculated and measured results are well matched. The model is capable of predicting the powder stream structure and multi-particle phase change process with liquid fraction evolution throughout the entire process while considering the particle morphology and size distribution in real powder samples.</description><subject>Coaxial powder flow</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Laser deposition</subject><subject>Laser direct deposition</subject><subject>Laser heating</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Numerical modeling</subject><subject>Physics</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkE1r3DAQhkVpodsk_0GXlFzsjGRbkm8tofkiIZfmLGR5lGjxWluN06T_vlo29FIIOQ0zPLzv8DB2IqAWINTpuo7rR3TLxhEt2c0UMNcSoK9B1yDMB7YSRveVFKb_yFYAQld9I-Az-0K03q3QqhW7uE0jTnF-4Clwn9xLdBPfpucRMw9TeuYhZb48Ip8cldMYM_qFj7hNFJeYZr7NySPRIfsU3ER49DoP2P35j59nl9XN3cXV2febyncgl0p5AVKOg_GALZjWDUaiM1rhYNohONkASGWk1r0ZlGj02OkweNn33aA9hOaAfd3nlt5fT0iL3UTyOE1uxvREtukAlAAo4MmboJBK6VabThb02x71ORFlDHab48blP1aA3cm2a_u_bLuTbUHbIrtEHL-2OfJuCoXxkf7lSCmk6OTuq-s9h8XR71hSyEecPe7F2jHF95f-BeuZoWA</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Wen, S.Y.</creator><creator>Shin, Y.C.</creator><creator>Murthy, J.Y.</creator><creator>Sojka, P.E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20091201</creationdate><title>Modeling of coaxial powder flow for the laser direct deposition process</title><author>Wen, S.Y. ; Shin, Y.C. ; Murthy, J.Y. ; Sojka, P.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-6c1022db8c0e4084ab82ea876eb84bfa230026827798b6137d57fbc2995b7c0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Coaxial powder flow</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Laser deposition</topic><topic>Laser direct deposition</topic><topic>Laser heating</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Numerical modeling</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, S.Y.</creatorcontrib><creatorcontrib>Shin, Y.C.</creatorcontrib><creatorcontrib>Murthy, J.Y.</creatorcontrib><creatorcontrib>Sojka, P.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, S.Y.</au><au>Shin, Y.C.</au><au>Murthy, J.Y.</au><au>Sojka, P.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of coaxial powder flow for the laser direct deposition process</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>52</volume><issue>25</issue><spage>5867</spage><epage>5877</epage><pages>5867-5877</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>The supplying powder jet conditions in a direct deposition process greatly influence the quality and property of deposition products. Coaxial powder flow provides the means of precise deposition due to its omnidirectional nature in a direct deposition process. In this paper, a comprehensive numerical model is presented to predict the whole process of coaxial powder flow, including the particle stream flow in and after the nozzle and laser–particle interaction process. By solving the coupled momentum transfer equations between the particle and gas phase while incorporating particle temperature evolution, the dynamic and thermal behavior of multi-particles in the stream is completely modeled. Calculated and measured results are well matched. The model is capable of predicting the powder stream structure and multi-particle phase change process with liquid fraction evolution throughout the entire process while considering the particle morphology and size distribution in real powder samples.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2009.07.018</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2009-12, Vol.52 (25), p.5867-5877
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_35006100
source Elsevier ScienceDirect Journals
subjects Coaxial powder flow
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Laser deposition
Laser direct deposition
Laser heating
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Numerical modeling
Physics
title Modeling of coaxial powder flow for the laser direct deposition process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20coaxial%20powder%20flow%20for%20the%20laser%20direct%20deposition%20process&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Wen,%20S.Y.&rft.date=2009-12-01&rft.volume=52&rft.issue=25&rft.spage=5867&rft.epage=5877&rft.pages=5867-5877&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2009.07.018&rft_dat=%3Cproquest_cross%3E35006100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266747852&rft_id=info:pmid/&rft_els_id=S0017931009004517&rfr_iscdi=true