Modeling of coaxial powder flow for the laser direct deposition process
The supplying powder jet conditions in a direct deposition process greatly influence the quality and property of deposition products. Coaxial powder flow provides the means of precise deposition due to its omnidirectional nature in a direct deposition process. In this paper, a comprehensive numerica...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2009-12, Vol.52 (25), p.5867-5877 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5877 |
---|---|
container_issue | 25 |
container_start_page | 5867 |
container_title | International journal of heat and mass transfer |
container_volume | 52 |
creator | Wen, S.Y. Shin, Y.C. Murthy, J.Y. Sojka, P.E. |
description | The supplying powder jet conditions in a direct deposition process greatly influence the quality and property of deposition products. Coaxial powder flow provides the means of precise deposition due to its omnidirectional nature in a direct deposition process. In this paper, a comprehensive numerical model is presented to predict the whole process of coaxial powder flow, including the particle stream flow in and after the nozzle and laser–particle interaction process. By solving the coupled momentum transfer equations between the particle and gas phase while incorporating particle temperature evolution, the dynamic and thermal behavior of multi-particles in the stream is completely modeled. Calculated and measured results are well matched. The model is capable of predicting the powder stream structure and multi-particle phase change process with liquid fraction evolution throughout the entire process while considering the particle morphology and size distribution in real powder samples. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2009.07.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_35006100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931009004517</els_id><sourcerecordid>35006100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-6c1022db8c0e4084ab82ea876eb84bfa230026827798b6137d57fbc2995b7c0f3</originalsourceid><addsrcrecordid>eNqNkE1r3DAQhkVpodsk_0GXlFzsjGRbkm8tofkiIZfmLGR5lGjxWluN06T_vlo29FIIOQ0zPLzv8DB2IqAWINTpuo7rR3TLxhEt2c0UMNcSoK9B1yDMB7YSRveVFKb_yFYAQld9I-Az-0K03q3QqhW7uE0jTnF-4Clwn9xLdBPfpucRMw9TeuYhZb48Ip8cldMYM_qFj7hNFJeYZr7NySPRIfsU3ER49DoP2P35j59nl9XN3cXV2febyncgl0p5AVKOg_GALZjWDUaiM1rhYNohONkASGWk1r0ZlGj02OkweNn33aA9hOaAfd3nlt5fT0iL3UTyOE1uxvREtukAlAAo4MmboJBK6VabThb02x71ORFlDHab48blP1aA3cm2a_u_bLuTbUHbIrtEHL-2OfJuCoXxkf7lSCmk6OTuq-s9h8XR71hSyEecPe7F2jHF95f-BeuZoWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266747852</pqid></control><display><type>article</type><title>Modeling of coaxial powder flow for the laser direct deposition process</title><source>Elsevier ScienceDirect Journals</source><creator>Wen, S.Y. ; Shin, Y.C. ; Murthy, J.Y. ; Sojka, P.E.</creator><creatorcontrib>Wen, S.Y. ; Shin, Y.C. ; Murthy, J.Y. ; Sojka, P.E.</creatorcontrib><description>The supplying powder jet conditions in a direct deposition process greatly influence the quality and property of deposition products. Coaxial powder flow provides the means of precise deposition due to its omnidirectional nature in a direct deposition process. In this paper, a comprehensive numerical model is presented to predict the whole process of coaxial powder flow, including the particle stream flow in and after the nozzle and laser–particle interaction process. By solving the coupled momentum transfer equations between the particle and gas phase while incorporating particle temperature evolution, the dynamic and thermal behavior of multi-particles in the stream is completely modeled. Calculated and measured results are well matched. The model is capable of predicting the powder stream structure and multi-particle phase change process with liquid fraction evolution throughout the entire process while considering the particle morphology and size distribution in real powder samples.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2009.07.018</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Coaxial powder flow ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Laser deposition ; Laser direct deposition ; Laser heating ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Numerical modeling ; Physics</subject><ispartof>International journal of heat and mass transfer, 2009-12, Vol.52 (25), p.5867-5877</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-6c1022db8c0e4084ab82ea876eb84bfa230026827798b6137d57fbc2995b7c0f3</citedby><cites>FETCH-LOGICAL-c502t-6c1022db8c0e4084ab82ea876eb84bfa230026827798b6137d57fbc2995b7c0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931009004517$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22121520$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, S.Y.</creatorcontrib><creatorcontrib>Shin, Y.C.</creatorcontrib><creatorcontrib>Murthy, J.Y.</creatorcontrib><creatorcontrib>Sojka, P.E.</creatorcontrib><title>Modeling of coaxial powder flow for the laser direct deposition process</title><title>International journal of heat and mass transfer</title><description>The supplying powder jet conditions in a direct deposition process greatly influence the quality and property of deposition products. Coaxial powder flow provides the means of precise deposition due to its omnidirectional nature in a direct deposition process. In this paper, a comprehensive numerical model is presented to predict the whole process of coaxial powder flow, including the particle stream flow in and after the nozzle and laser–particle interaction process. By solving the coupled momentum transfer equations between the particle and gas phase while incorporating particle temperature evolution, the dynamic and thermal behavior of multi-particles in the stream is completely modeled. Calculated and measured results are well matched. The model is capable of predicting the powder stream structure and multi-particle phase change process with liquid fraction evolution throughout the entire process while considering the particle morphology and size distribution in real powder samples.</description><subject>Coaxial powder flow</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Laser deposition</subject><subject>Laser direct deposition</subject><subject>Laser heating</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Numerical modeling</subject><subject>Physics</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkE1r3DAQhkVpodsk_0GXlFzsjGRbkm8tofkiIZfmLGR5lGjxWluN06T_vlo29FIIOQ0zPLzv8DB2IqAWINTpuo7rR3TLxhEt2c0UMNcSoK9B1yDMB7YSRveVFKb_yFYAQld9I-Az-0K03q3QqhW7uE0jTnF-4Clwn9xLdBPfpucRMw9TeuYhZb48Ip8cldMYM_qFj7hNFJeYZr7NySPRIfsU3ER49DoP2P35j59nl9XN3cXV2febyncgl0p5AVKOg_GALZjWDUaiM1rhYNohONkASGWk1r0ZlGj02OkweNn33aA9hOaAfd3nlt5fT0iL3UTyOE1uxvREtukAlAAo4MmboJBK6VabThb02x71ORFlDHab48blP1aA3cm2a_u_bLuTbUHbIrtEHL-2OfJuCoXxkf7lSCmk6OTuq-s9h8XR71hSyEecPe7F2jHF95f-BeuZoWA</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Wen, S.Y.</creator><creator>Shin, Y.C.</creator><creator>Murthy, J.Y.</creator><creator>Sojka, P.E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20091201</creationdate><title>Modeling of coaxial powder flow for the laser direct deposition process</title><author>Wen, S.Y. ; Shin, Y.C. ; Murthy, J.Y. ; Sojka, P.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-6c1022db8c0e4084ab82ea876eb84bfa230026827798b6137d57fbc2995b7c0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Coaxial powder flow</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Laser deposition</topic><topic>Laser direct deposition</topic><topic>Laser heating</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Numerical modeling</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, S.Y.</creatorcontrib><creatorcontrib>Shin, Y.C.</creatorcontrib><creatorcontrib>Murthy, J.Y.</creatorcontrib><creatorcontrib>Sojka, P.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, S.Y.</au><au>Shin, Y.C.</au><au>Murthy, J.Y.</au><au>Sojka, P.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of coaxial powder flow for the laser direct deposition process</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>52</volume><issue>25</issue><spage>5867</spage><epage>5877</epage><pages>5867-5877</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>The supplying powder jet conditions in a direct deposition process greatly influence the quality and property of deposition products. Coaxial powder flow provides the means of precise deposition due to its omnidirectional nature in a direct deposition process. In this paper, a comprehensive numerical model is presented to predict the whole process of coaxial powder flow, including the particle stream flow in and after the nozzle and laser–particle interaction process. By solving the coupled momentum transfer equations between the particle and gas phase while incorporating particle temperature evolution, the dynamic and thermal behavior of multi-particles in the stream is completely modeled. Calculated and measured results are well matched. The model is capable of predicting the powder stream structure and multi-particle phase change process with liquid fraction evolution throughout the entire process while considering the particle morphology and size distribution in real powder samples.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2009.07.018</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2009-12, Vol.52 (25), p.5867-5877 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_35006100 |
source | Elsevier ScienceDirect Journals |
subjects | Coaxial powder flow Cross-disciplinary physics: materials science rheology Exact sciences and technology Laser deposition Laser direct deposition Laser heating Materials science Methods of deposition of films and coatings film growth and epitaxy Numerical modeling Physics |
title | Modeling of coaxial powder flow for the laser direct deposition process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20coaxial%20powder%20flow%20for%20the%20laser%20direct%20deposition%20process&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Wen,%20S.Y.&rft.date=2009-12-01&rft.volume=52&rft.issue=25&rft.spage=5867&rft.epage=5877&rft.pages=5867-5877&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2009.07.018&rft_dat=%3Cproquest_cross%3E35006100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266747852&rft_id=info:pmid/&rft_els_id=S0017931009004517&rfr_iscdi=true |