In situ surface displacement analysis on sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under bending loading

Deformation and damage mechanisms of sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under four-point bending condition have been investigated in situ by surface displacement analysis software (SDA). Plastic collapse of the sandwich beams within the foam core is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2004-11, Vol.386 (1), p.91-103
Hauptverfasser: Sha, J.B., Yip, T.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue 1
container_start_page 91
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 386
creator Sha, J.B.
Yip, T.H.
description Deformation and damage mechanisms of sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under four-point bending condition have been investigated in situ by surface displacement analysis software (SDA). Plastic collapse of the sandwich beams within the foam core is by two basic modes, indentation (ID) and core shear (CS), while failure of the multilayer beams depends on if their face sheets show ID or not. If a sandwich fails by ID, the multilayer beams with similar face sheets show ID mode in the first core and CS mode in the other cores of the beam. However, multilayer beams with face sheets that only display CS mode in sandwiches may fail in pure CS in every core. SDA results illustrated that indentation is locally compressive deformation on the beam beneath the loading rollers, where displacement and compressive strain are the maximum. In the case of CS that happens in the core between inner and outer rollers that corresponds to the maximum shear strain, discontinuously horizontal and vertical displacement is the mechanics factor for shear crack initiation, growth and broadening, and beam collapse. A simple criterion is given as F ID > F CS   CS   mode   taking   place, and F ID < F CS   ID   mode   taking   place, for prediction of the failure mode, where F ID and F CS are the loading limits of the indentation and core shear, which can be expressed as 4 t( σ cy × σ fy) 1/2 and 2( c + d) τ cy, respectively ( σ cy: yield strength of foam, σ fy: yield strength of face sheet, τ cy: shear yield strength of foam, c: thickness of core, d: thickness of beam and t: thickness of face sheet). Beams tend to fail in ID mode when the thickness and strength of face sheet decreases. The CS mode may dominate failure when the thickness of core increases.
doi_str_mv 10.1016/j.msea.2004.07.034
format Article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_miscellaneous_34993394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509304009463</els_id><sourcerecordid>34993394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-96ca5972610650b05ef93b3afc302d95f785a214cec77ab0b8ba840fef23ef573</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhS3UStyWvgArr9gljH8SxxIbVPFTqRIbWFuOPW59ZTuXOAH1PXjgJr3sYXVGM2fmaPQR8pZBy4D1749trmhbDiBbUC0I-Yoc2KBEI7XoL8gBNGdNB1q8Jle1HgGASegO5M9doTUuK63rHKxD6mM9pa3IWBZqi01PNVY6bS5b_O_oHremp3lNS0z2CWc6os2VuimfpoqeToHatOZY1kzDZPM2mfG8g4tNKTr6klMfEZdK1-JfbhQfywNNk931DbkMNlW8-avX5MfnT99vvzb3377c3X68b5yQw9Lo3tlOK94z6DsYocOgxShscAK4111QQ2c5kw6dUnaEcRjtICFg4AJDp8Q1eXe-e5qnnyvWxeRYHaZkC05rNUJqLYSW_zTyYdiy-PAfRq4kU3v0h7MRt_9-RZxNdRGLQx9ndIvxUzQMzA7XHM0O1-xwDSizwRXPWF-c6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28274177</pqid></control><display><type>article</type><title>In situ surface displacement analysis on sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under bending loading</title><source>Elsevier ScienceDirect Journals</source><creator>Sha, J.B. ; Yip, T.H.</creator><creatorcontrib>Sha, J.B. ; Yip, T.H.</creatorcontrib><description>Deformation and damage mechanisms of sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under four-point bending condition have been investigated in situ by surface displacement analysis software (SDA). Plastic collapse of the sandwich beams within the foam core is by two basic modes, indentation (ID) and core shear (CS), while failure of the multilayer beams depends on if their face sheets show ID or not. If a sandwich fails by ID, the multilayer beams with similar face sheets show ID mode in the first core and CS mode in the other cores of the beam. However, multilayer beams with face sheets that only display CS mode in sandwiches may fail in pure CS in every core. SDA results illustrated that indentation is locally compressive deformation on the beam beneath the loading rollers, where displacement and compressive strain are the maximum. In the case of CS that happens in the core between inner and outer rollers that corresponds to the maximum shear strain, discontinuously horizontal and vertical displacement is the mechanics factor for shear crack initiation, growth and broadening, and beam collapse. A simple criterion is given as F ID &gt; F CS   CS   mode   taking   place, and F ID &lt; F CS   ID   mode   taking   place, for prediction of the failure mode, where F ID and F CS are the loading limits of the indentation and core shear, which can be expressed as 4 t( σ cy × σ fy) 1/2 and 2( c + d) τ cy, respectively ( σ cy: yield strength of foam, σ fy: yield strength of face sheet, τ cy: shear yield strength of foam, c: thickness of core, d: thickness of beam and t: thickness of face sheet). Beams tend to fail in ID mode when the thickness and strength of face sheet decreases. The CS mode may dominate failure when the thickness of core increases.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2004.07.034</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Aluminum foam ; Core shear ; Four-point bending ; Indentation ; Sandwich and multilayer beams ; Surface displacement analysis</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2004-11, Vol.386 (1), p.91-103</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-96ca5972610650b05ef93b3afc302d95f785a214cec77ab0b8ba840fef23ef573</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2004.07.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Sha, J.B.</creatorcontrib><creatorcontrib>Yip, T.H.</creatorcontrib><title>In situ surface displacement analysis on sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under bending loading</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Deformation and damage mechanisms of sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under four-point bending condition have been investigated in situ by surface displacement analysis software (SDA). Plastic collapse of the sandwich beams within the foam core is by two basic modes, indentation (ID) and core shear (CS), while failure of the multilayer beams depends on if their face sheets show ID or not. If a sandwich fails by ID, the multilayer beams with similar face sheets show ID mode in the first core and CS mode in the other cores of the beam. However, multilayer beams with face sheets that only display CS mode in sandwiches may fail in pure CS in every core. SDA results illustrated that indentation is locally compressive deformation on the beam beneath the loading rollers, where displacement and compressive strain are the maximum. In the case of CS that happens in the core between inner and outer rollers that corresponds to the maximum shear strain, discontinuously horizontal and vertical displacement is the mechanics factor for shear crack initiation, growth and broadening, and beam collapse. A simple criterion is given as F ID &gt; F CS   CS   mode   taking   place, and F ID &lt; F CS   ID   mode   taking   place, for prediction of the failure mode, where F ID and F CS are the loading limits of the indentation and core shear, which can be expressed as 4 t( σ cy × σ fy) 1/2 and 2( c + d) τ cy, respectively ( σ cy: yield strength of foam, σ fy: yield strength of face sheet, τ cy: shear yield strength of foam, c: thickness of core, d: thickness of beam and t: thickness of face sheet). Beams tend to fail in ID mode when the thickness and strength of face sheet decreases. The CS mode may dominate failure when the thickness of core increases.</description><subject>Aluminum foam</subject><subject>Core shear</subject><subject>Four-point bending</subject><subject>Indentation</subject><subject>Sandwich and multilayer beams</subject><subject>Surface displacement analysis</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1TAQhS3UStyWvgArr9gljH8SxxIbVPFTqRIbWFuOPW59ZTuXOAH1PXjgJr3sYXVGM2fmaPQR8pZBy4D1749trmhbDiBbUC0I-Yoc2KBEI7XoL8gBNGdNB1q8Jle1HgGASegO5M9doTUuK63rHKxD6mM9pa3IWBZqi01PNVY6bS5b_O_oHremp3lNS0z2CWc6os2VuimfpoqeToHatOZY1kzDZPM2mfG8g4tNKTr6klMfEZdK1-JfbhQfywNNk931DbkMNlW8-avX5MfnT99vvzb3377c3X68b5yQw9Lo3tlOK94z6DsYocOgxShscAK4111QQ2c5kw6dUnaEcRjtICFg4AJDp8Q1eXe-e5qnnyvWxeRYHaZkC05rNUJqLYSW_zTyYdiy-PAfRq4kU3v0h7MRt_9-RZxNdRGLQx9ndIvxUzQMzA7XHM0O1-xwDSizwRXPWF-c6Q</recordid><startdate>20041125</startdate><enddate>20041125</enddate><creator>Sha, J.B.</creator><creator>Yip, T.H.</creator><general>Elsevier B.V</general><scope>7QF</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>H8D</scope><scope>L7M</scope><scope>7SR</scope></search><sort><creationdate>20041125</creationdate><title>In situ surface displacement analysis on sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under bending loading</title><author>Sha, J.B. ; Yip, T.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-96ca5972610650b05ef93b3afc302d95f785a214cec77ab0b8ba840fef23ef573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aluminum foam</topic><topic>Core shear</topic><topic>Four-point bending</topic><topic>Indentation</topic><topic>Sandwich and multilayer beams</topic><topic>Surface displacement analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sha, J.B.</creatorcontrib><creatorcontrib>Yip, T.H.</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sha, J.B.</au><au>Yip, T.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ surface displacement analysis on sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under bending loading</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2004-11-25</date><risdate>2004</risdate><volume>386</volume><issue>1</issue><spage>91</spage><epage>103</epage><pages>91-103</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Deformation and damage mechanisms of sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under four-point bending condition have been investigated in situ by surface displacement analysis software (SDA). Plastic collapse of the sandwich beams within the foam core is by two basic modes, indentation (ID) and core shear (CS), while failure of the multilayer beams depends on if their face sheets show ID or not. If a sandwich fails by ID, the multilayer beams with similar face sheets show ID mode in the first core and CS mode in the other cores of the beam. However, multilayer beams with face sheets that only display CS mode in sandwiches may fail in pure CS in every core. SDA results illustrated that indentation is locally compressive deformation on the beam beneath the loading rollers, where displacement and compressive strain are the maximum. In the case of CS that happens in the core between inner and outer rollers that corresponds to the maximum shear strain, discontinuously horizontal and vertical displacement is the mechanics factor for shear crack initiation, growth and broadening, and beam collapse. A simple criterion is given as F ID &gt; F CS   CS   mode   taking   place, and F ID &lt; F CS   ID   mode   taking   place, for prediction of the failure mode, where F ID and F CS are the loading limits of the indentation and core shear, which can be expressed as 4 t( σ cy × σ fy) 1/2 and 2( c + d) τ cy, respectively ( σ cy: yield strength of foam, σ fy: yield strength of face sheet, τ cy: shear yield strength of foam, c: thickness of core, d: thickness of beam and t: thickness of face sheet). Beams tend to fail in ID mode when the thickness and strength of face sheet decreases. The CS mode may dominate failure when the thickness of core increases.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2004.07.034</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2004-11, Vol.386 (1), p.91-103
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_34993394
source Elsevier ScienceDirect Journals
subjects Aluminum foam
Core shear
Four-point bending
Indentation
Sandwich and multilayer beams
Surface displacement analysis
title In situ surface displacement analysis on sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under bending loading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20surface%20displacement%20analysis%20on%20sandwich%20and%20multilayer%20beams%20composed%20of%20aluminum%20foam%20core%20and%20metallic%20face%20sheets%20under%20bending%20loading&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Sha,%20J.B.&rft.date=2004-11-25&rft.volume=386&rft.issue=1&rft.spage=91&rft.epage=103&rft.pages=91-103&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2004.07.034&rft_dat=%3Cproquest_elsev%3E34993394%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28274177&rft_id=info:pmid/&rft_els_id=S0921509304009463&rfr_iscdi=true