On the non-linear Maxwell–Cattaneo equation with non-constant diffusivity: Shock and discontinuity waves

A numerical study on a non-linear hyperbolic diffusion equation is proposed. The Hartree hybrid method combining finite difference techniques with the method of characteristics is used in the presence of discontinuities between initial and boundary conditions. The technique proved to be an useful to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2008-10, Vol.51 (21), p.5327-5332
Hauptverfasser: Reverberi, Andrea Pietro, Bagnerini, Patrizia, Maga, Luigi, Bruzzone, Agostino Giacinto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5332
container_issue 21
container_start_page 5327
container_title International journal of heat and mass transfer
container_volume 51
creator Reverberi, Andrea Pietro
Bagnerini, Patrizia
Maga, Luigi
Bruzzone, Agostino Giacinto
description A numerical study on a non-linear hyperbolic diffusion equation is proposed. The Hartree hybrid method combining finite difference techniques with the method of characteristics is used in the presence of discontinuities between initial and boundary conditions. The technique proved to be an useful tool to overcome oscillation problems and spurious solutions in case of strong non-linearities related to both attractive or repulsive interactions between diffusing species. Two different expressions for the diffusion coefficient are used in order to compare our results with the ones obtained in previous studies relying upon the Laplace transform technique and the MacCormack predictor–corrector method. Finally, an analytic approach based on the singular surface theory is proposed to motivate the numerical results and to clarify some controversial aspects concerning the penetration depth of a diffusive front in the presence of interactions.
doi_str_mv 10.1016/j.ijheatmasstransfer.2008.01.039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34992855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931008002184</els_id><sourcerecordid>34992855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-86cb0f66eb67fe4c19fc19c289f1e5915ad25a8fb622fa9a547d1f70999842d23</originalsourceid><addsrcrecordid>eNqNkE1uFDEQhS0EEkPIHbwJYtON7f6zWYFGJIASZZFkbdW4yxp3etyJ7Z4hO-6QG3KSeJiIDZssSla5Pr2q9wj5yFnJGW8_DaUb1ghpAzGmAD5aDKVgTJaMl6xSr8iCy04Vgkv1miwY412hKs7ekncxDvuW1e2CDJeepjVSP_lidB4h0Av4tcNx_PP7cQkpgceJ4v0MyU2e7lxa_2XN5GOeJdo7a-foti49fKZX68ncUvB9_o4ZSc7PeUB3sMX4nryxMEY8fn6PyM3pt-vl9-L88uzH8ut5YWpWpUK2ZsVs2-Kq7SzWhiubywipLMdG8QZ60YC0q1YICwqauuu57ZhSStaiF9UR-XDQvQvT_Ywx6U0-JjvaW5mjrmqlhGyaDH45gCZMMQa0-i64DYQHzZneh6wH_X_Ieh-yZlznkLPEyfMuiAZGmxnj4j8dwbq67ZjM3M8Dh9n41mWVaBx6g70LaJLuJ_fypU8tqaLL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34992855</pqid></control><display><type>article</type><title>On the non-linear Maxwell–Cattaneo equation with non-constant diffusivity: Shock and discontinuity waves</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Reverberi, Andrea Pietro ; Bagnerini, Patrizia ; Maga, Luigi ; Bruzzone, Agostino Giacinto</creator><creatorcontrib>Reverberi, Andrea Pietro ; Bagnerini, Patrizia ; Maga, Luigi ; Bruzzone, Agostino Giacinto</creatorcontrib><description>A numerical study on a non-linear hyperbolic diffusion equation is proposed. The Hartree hybrid method combining finite difference techniques with the method of characteristics is used in the presence of discontinuities between initial and boundary conditions. The technique proved to be an useful tool to overcome oscillation problems and spurious solutions in case of strong non-linearities related to both attractive or repulsive interactions between diffusing species. Two different expressions for the diffusion coefficient are used in order to compare our results with the ones obtained in previous studies relying upon the Laplace transform technique and the MacCormack predictor–corrector method. Finally, an analytic approach based on the singular surface theory is proposed to motivate the numerical results and to clarify some controversial aspects concerning the penetration depth of a diffusive front in the presence of interactions.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2008.01.039</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Boson degeneracy and superfluidity of 4he ; Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Finite-differences ; Fundamental areas of phenomenology (including applications) ; Heat conduction ; Heat transfer ; Hyperbolic partial differential equations ; Non-Fickian diffusion ; Non-Fourier heat conduction ; Physics ; Quantum fluids and solids; liquid and solid helium ; Transport processes, second and other sounds, and thermal counterflow; kapitza resistance</subject><ispartof>International journal of heat and mass transfer, 2008-10, Vol.51 (21), p.5327-5332</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-86cb0f66eb67fe4c19fc19c289f1e5915ad25a8fb622fa9a547d1f70999842d23</citedby><cites>FETCH-LOGICAL-c403t-86cb0f66eb67fe4c19fc19c289f1e5915ad25a8fb622fa9a547d1f70999842d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.01.039$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20746708$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reverberi, Andrea Pietro</creatorcontrib><creatorcontrib>Bagnerini, Patrizia</creatorcontrib><creatorcontrib>Maga, Luigi</creatorcontrib><creatorcontrib>Bruzzone, Agostino Giacinto</creatorcontrib><title>On the non-linear Maxwell–Cattaneo equation with non-constant diffusivity: Shock and discontinuity waves</title><title>International journal of heat and mass transfer</title><description>A numerical study on a non-linear hyperbolic diffusion equation is proposed. The Hartree hybrid method combining finite difference techniques with the method of characteristics is used in the presence of discontinuities between initial and boundary conditions. The technique proved to be an useful tool to overcome oscillation problems and spurious solutions in case of strong non-linearities related to both attractive or repulsive interactions between diffusing species. Two different expressions for the diffusion coefficient are used in order to compare our results with the ones obtained in previous studies relying upon the Laplace transform technique and the MacCormack predictor–corrector method. Finally, an analytic approach based on the singular surface theory is proposed to motivate the numerical results and to clarify some controversial aspects concerning the penetration depth of a diffusive front in the presence of interactions.</description><subject>Boson degeneracy and superfluidity of 4he</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Finite-differences</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat conduction</subject><subject>Heat transfer</subject><subject>Hyperbolic partial differential equations</subject><subject>Non-Fickian diffusion</subject><subject>Non-Fourier heat conduction</subject><subject>Physics</subject><subject>Quantum fluids and solids; liquid and solid helium</subject><subject>Transport processes, second and other sounds, and thermal counterflow; kapitza resistance</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkE1uFDEQhS0EEkPIHbwJYtON7f6zWYFGJIASZZFkbdW4yxp3etyJ7Z4hO-6QG3KSeJiIDZssSla5Pr2q9wj5yFnJGW8_DaUb1ghpAzGmAD5aDKVgTJaMl6xSr8iCy04Vgkv1miwY412hKs7ekncxDvuW1e2CDJeepjVSP_lidB4h0Av4tcNx_PP7cQkpgceJ4v0MyU2e7lxa_2XN5GOeJdo7a-foti49fKZX68ncUvB9_o4ZSc7PeUB3sMX4nryxMEY8fn6PyM3pt-vl9-L88uzH8ut5YWpWpUK2ZsVs2-Kq7SzWhiubywipLMdG8QZ60YC0q1YICwqauuu57ZhSStaiF9UR-XDQvQvT_Ywx6U0-JjvaW5mjrmqlhGyaDH45gCZMMQa0-i64DYQHzZneh6wH_X_Ieh-yZlznkLPEyfMuiAZGmxnj4j8dwbq67ZjM3M8Dh9n41mWVaBx6g70LaJLuJ_fypU8tqaLL</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Reverberi, Andrea Pietro</creator><creator>Bagnerini, Patrizia</creator><creator>Maga, Luigi</creator><creator>Bruzzone, Agostino Giacinto</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20081001</creationdate><title>On the non-linear Maxwell–Cattaneo equation with non-constant diffusivity: Shock and discontinuity waves</title><author>Reverberi, Andrea Pietro ; Bagnerini, Patrizia ; Maga, Luigi ; Bruzzone, Agostino Giacinto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-86cb0f66eb67fe4c19fc19c289f1e5915ad25a8fb622fa9a547d1f70999842d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Boson degeneracy and superfluidity of 4he</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Finite-differences</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat conduction</topic><topic>Heat transfer</topic><topic>Hyperbolic partial differential equations</topic><topic>Non-Fickian diffusion</topic><topic>Non-Fourier heat conduction</topic><topic>Physics</topic><topic>Quantum fluids and solids; liquid and solid helium</topic><topic>Transport processes, second and other sounds, and thermal counterflow; kapitza resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reverberi, Andrea Pietro</creatorcontrib><creatorcontrib>Bagnerini, Patrizia</creatorcontrib><creatorcontrib>Maga, Luigi</creatorcontrib><creatorcontrib>Bruzzone, Agostino Giacinto</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reverberi, Andrea Pietro</au><au>Bagnerini, Patrizia</au><au>Maga, Luigi</au><au>Bruzzone, Agostino Giacinto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the non-linear Maxwell–Cattaneo equation with non-constant diffusivity: Shock and discontinuity waves</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>51</volume><issue>21</issue><spage>5327</spage><epage>5332</epage><pages>5327-5332</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>A numerical study on a non-linear hyperbolic diffusion equation is proposed. The Hartree hybrid method combining finite difference techniques with the method of characteristics is used in the presence of discontinuities between initial and boundary conditions. The technique proved to be an useful tool to overcome oscillation problems and spurious solutions in case of strong non-linearities related to both attractive or repulsive interactions between diffusing species. Two different expressions for the diffusion coefficient are used in order to compare our results with the ones obtained in previous studies relying upon the Laplace transform technique and the MacCormack predictor–corrector method. Finally, an analytic approach based on the singular surface theory is proposed to motivate the numerical results and to clarify some controversial aspects concerning the penetration depth of a diffusive front in the presence of interactions.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2008.01.039</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2008-10, Vol.51 (21), p.5327-5332
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_34992855
source Elsevier ScienceDirect Journals Complete
subjects Boson degeneracy and superfluidity of 4he
Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Finite-differences
Fundamental areas of phenomenology (including applications)
Heat conduction
Heat transfer
Hyperbolic partial differential equations
Non-Fickian diffusion
Non-Fourier heat conduction
Physics
Quantum fluids and solids
liquid and solid helium
Transport processes, second and other sounds, and thermal counterflow
kapitza resistance
title On the non-linear Maxwell–Cattaneo equation with non-constant diffusivity: Shock and discontinuity waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20non-linear%20Maxwell%E2%80%93Cattaneo%20equation%20with%20non-constant%20diffusivity:%20Shock%20and%20discontinuity%20waves&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Reverberi,%20Andrea%20Pietro&rft.date=2008-10-01&rft.volume=51&rft.issue=21&rft.spage=5327&rft.epage=5332&rft.pages=5327-5332&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2008.01.039&rft_dat=%3Cproquest_cross%3E34992855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34992855&rft_id=info:pmid/&rft_els_id=S0017931008002184&rfr_iscdi=true