Electrical characterisation of thin silicon layers by light beam induced current and internal quantum efficiency measurements

Thin crystalline silicon layers (50 μm) were grown by vapour phase epitaxy on monocrystalline substrates. Minority carrier diffusion length and surface recombination velocity were evaluated by light beam induced current experiment. Although it appeared difficult to apply existing analytical models t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2009-11, Vol.165 (1), p.67-70
Hauptverfasser: Sayad, Y., Amtablian, S., Kaminski, A., Blanc, D., Carroy, P., Nouiri, A., Lemiti, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 1
container_start_page 67
container_title Materials science & engineering. B, Solid-state materials for advanced technology
container_volume 165
creator Sayad, Y.
Amtablian, S.
Kaminski, A.
Blanc, D.
Carroy, P.
Nouiri, A.
Lemiti, M.
description Thin crystalline silicon layers (50 μm) were grown by vapour phase epitaxy on monocrystalline substrates. Minority carrier diffusion length and surface recombination velocity were evaluated by light beam induced current experiment. Although it appeared difficult to apply existing analytical models to thin and high quality layers, multi-dimensional simulator DESSIS was used successfully to extract diffusion length of the order of 300 μm for p-type material and 80 μm for n-type material with surface recombination velocity of the order of 100–1000 cm s −1 when the surface was passivated by a thin silicon nitrite coating. Results were compared with the diffusion length evaluated from internal quantum efficiency analysis in fabricated photovoltaic cells made of the same material, using spectral response and reflectivity measurements.
doi_str_mv 10.1016/j.mseb.2009.04.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34986777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092151070900141X</els_id><sourcerecordid>34986777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-789f2d4c4c0617669740ffe2d97a9bf594a4efb71642e57b4f20e337c75c38423</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKus3LXepJlmAm5EfIHgRtchTW-cDG2qSSrMwv9uxnHt6nIu5xw4HyEXDGoGrL3a1GPCruYAqgZRA8gDsmAr2VRCCXFIFqA4q5YM5DE5SWkDAIxzviDfdwPaHL01A7VrE43NGH0y2U-BTo7mtQ80-cHbogezxZhot6WDf19n2qEZqQ_9bLGndo4RQ6Ym9OVXWkKp_JxNyPNI0TlvPQa7pSOaNEccizedkSNnhoTnf_eUvN3fvd4-Vs8vD0-3N8-VbRqWK7lSjvfCCgstk22rpADnkPdKGtW5pRJGoOskawXHpeyE44BNI61c2mYleHNKLve9H3H6nDFlPfpkcRhMwGlOuhFq1Uopi5HvjTZOKUV0-iP60cStZqB3pPVG70jrHWkNQhfSJXS9D2GZ8OUx6vS7FXsfC1zdT_6_-A-6B4o3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34986777</pqid></control><display><type>article</type><title>Electrical characterisation of thin silicon layers by light beam induced current and internal quantum efficiency measurements</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sayad, Y. ; Amtablian, S. ; Kaminski, A. ; Blanc, D. ; Carroy, P. ; Nouiri, A. ; Lemiti, M.</creator><creatorcontrib>Sayad, Y. ; Amtablian, S. ; Kaminski, A. ; Blanc, D. ; Carroy, P. ; Nouiri, A. ; Lemiti, M.</creatorcontrib><description>Thin crystalline silicon layers (50 μm) were grown by vapour phase epitaxy on monocrystalline substrates. Minority carrier diffusion length and surface recombination velocity were evaluated by light beam induced current experiment. Although it appeared difficult to apply existing analytical models to thin and high quality layers, multi-dimensional simulator DESSIS was used successfully to extract diffusion length of the order of 300 μm for p-type material and 80 μm for n-type material with surface recombination velocity of the order of 100–1000 cm s −1 when the surface was passivated by a thin silicon nitrite coating. Results were compared with the diffusion length evaluated from internal quantum efficiency analysis in fabricated photovoltaic cells made of the same material, using spectral response and reflectivity measurements.</description><identifier>ISSN: 0921-5107</identifier><identifier>EISSN: 1873-4944</identifier><identifier>DOI: 10.1016/j.mseb.2009.04.007</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Diffusion length ; Epitaxial silicon ; LBIC ; Quantum efficiency ; Solar cells ; Thin films</subject><ispartof>Materials science &amp; engineering. B, Solid-state materials for advanced technology, 2009-11, Vol.165 (1), p.67-70</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-789f2d4c4c0617669740ffe2d97a9bf594a4efb71642e57b4f20e337c75c38423</citedby><cites>FETCH-LOGICAL-c331t-789f2d4c4c0617669740ffe2d97a9bf594a4efb71642e57b4f20e337c75c38423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mseb.2009.04.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sayad, Y.</creatorcontrib><creatorcontrib>Amtablian, S.</creatorcontrib><creatorcontrib>Kaminski, A.</creatorcontrib><creatorcontrib>Blanc, D.</creatorcontrib><creatorcontrib>Carroy, P.</creatorcontrib><creatorcontrib>Nouiri, A.</creatorcontrib><creatorcontrib>Lemiti, M.</creatorcontrib><title>Electrical characterisation of thin silicon layers by light beam induced current and internal quantum efficiency measurements</title><title>Materials science &amp; engineering. B, Solid-state materials for advanced technology</title><description>Thin crystalline silicon layers (50 μm) were grown by vapour phase epitaxy on monocrystalline substrates. Minority carrier diffusion length and surface recombination velocity were evaluated by light beam induced current experiment. Although it appeared difficult to apply existing analytical models to thin and high quality layers, multi-dimensional simulator DESSIS was used successfully to extract diffusion length of the order of 300 μm for p-type material and 80 μm for n-type material with surface recombination velocity of the order of 100–1000 cm s −1 when the surface was passivated by a thin silicon nitrite coating. Results were compared with the diffusion length evaluated from internal quantum efficiency analysis in fabricated photovoltaic cells made of the same material, using spectral response and reflectivity measurements.</description><subject>Diffusion length</subject><subject>Epitaxial silicon</subject><subject>LBIC</subject><subject>Quantum efficiency</subject><subject>Solar cells</subject><subject>Thin films</subject><issn>0921-5107</issn><issn>1873-4944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gKus3LXepJlmAm5EfIHgRtchTW-cDG2qSSrMwv9uxnHt6nIu5xw4HyEXDGoGrL3a1GPCruYAqgZRA8gDsmAr2VRCCXFIFqA4q5YM5DE5SWkDAIxzviDfdwPaHL01A7VrE43NGH0y2U-BTo7mtQ80-cHbogezxZhot6WDf19n2qEZqQ_9bLGndo4RQ6Ym9OVXWkKp_JxNyPNI0TlvPQa7pSOaNEccizedkSNnhoTnf_eUvN3fvd4-Vs8vD0-3N8-VbRqWK7lSjvfCCgstk22rpADnkPdKGtW5pRJGoOskawXHpeyE44BNI61c2mYleHNKLve9H3H6nDFlPfpkcRhMwGlOuhFq1Uopi5HvjTZOKUV0-iP60cStZqB3pPVG70jrHWkNQhfSJXS9D2GZ8OUx6vS7FXsfC1zdT_6_-A-6B4o3</recordid><startdate>20091125</startdate><enddate>20091125</enddate><creator>Sayad, Y.</creator><creator>Amtablian, S.</creator><creator>Kaminski, A.</creator><creator>Blanc, D.</creator><creator>Carroy, P.</creator><creator>Nouiri, A.</creator><creator>Lemiti, M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20091125</creationdate><title>Electrical characterisation of thin silicon layers by light beam induced current and internal quantum efficiency measurements</title><author>Sayad, Y. ; Amtablian, S. ; Kaminski, A. ; Blanc, D. ; Carroy, P. ; Nouiri, A. ; Lemiti, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-789f2d4c4c0617669740ffe2d97a9bf594a4efb71642e57b4f20e337c75c38423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Diffusion length</topic><topic>Epitaxial silicon</topic><topic>LBIC</topic><topic>Quantum efficiency</topic><topic>Solar cells</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayad, Y.</creatorcontrib><creatorcontrib>Amtablian, S.</creatorcontrib><creatorcontrib>Kaminski, A.</creatorcontrib><creatorcontrib>Blanc, D.</creatorcontrib><creatorcontrib>Carroy, P.</creatorcontrib><creatorcontrib>Nouiri, A.</creatorcontrib><creatorcontrib>Lemiti, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayad, Y.</au><au>Amtablian, S.</au><au>Kaminski, A.</au><au>Blanc, D.</au><au>Carroy, P.</au><au>Nouiri, A.</au><au>Lemiti, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical characterisation of thin silicon layers by light beam induced current and internal quantum efficiency measurements</atitle><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle><date>2009-11-25</date><risdate>2009</risdate><volume>165</volume><issue>1</issue><spage>67</spage><epage>70</epage><pages>67-70</pages><issn>0921-5107</issn><eissn>1873-4944</eissn><abstract>Thin crystalline silicon layers (50 μm) were grown by vapour phase epitaxy on monocrystalline substrates. Minority carrier diffusion length and surface recombination velocity were evaluated by light beam induced current experiment. Although it appeared difficult to apply existing analytical models to thin and high quality layers, multi-dimensional simulator DESSIS was used successfully to extract diffusion length of the order of 300 μm for p-type material and 80 μm for n-type material with surface recombination velocity of the order of 100–1000 cm s −1 when the surface was passivated by a thin silicon nitrite coating. Results were compared with the diffusion length evaluated from internal quantum efficiency analysis in fabricated photovoltaic cells made of the same material, using spectral response and reflectivity measurements.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mseb.2009.04.007</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5107
ispartof Materials science & engineering. B, Solid-state materials for advanced technology, 2009-11, Vol.165 (1), p.67-70
issn 0921-5107
1873-4944
language eng
recordid cdi_proquest_miscellaneous_34986777
source Elsevier ScienceDirect Journals Complete
subjects Diffusion length
Epitaxial silicon
LBIC
Quantum efficiency
Solar cells
Thin films
title Electrical characterisation of thin silicon layers by light beam induced current and internal quantum efficiency measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20characterisation%20of%20thin%20silicon%20layers%20by%20light%20beam%20induced%20current%20and%20internal%20quantum%20efficiency%20measurements&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Sayad,%20Y.&rft.date=2009-11-25&rft.volume=165&rft.issue=1&rft.spage=67&rft.epage=70&rft.pages=67-70&rft.issn=0921-5107&rft.eissn=1873-4944&rft_id=info:doi/10.1016/j.mseb.2009.04.007&rft_dat=%3Cproquest_cross%3E34986777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34986777&rft_id=info:pmid/&rft_els_id=S092151070900141X&rfr_iscdi=true