Functional canonical analysis between functional and interval data

In this study we discuss the functional canonical correlation analysis between the functional data and the interval data. To address the interval data, a representative is of necessity. Based on the work by Chavent et al. (2002), the representative can be derived by using the Hausdorff distance betw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP conference proceedings 2008-09, Vol.1148, p.453-457
Hauptverfasser: Jou, Yow-Jen, Huang, Chien-Chia, Wu, Jennifer Yuh-Jen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 457
container_issue
container_start_page 453
container_title AIP conference proceedings
container_volume 1148
creator Jou, Yow-Jen
Huang, Chien-Chia
Wu, Jennifer Yuh-Jen
description In this study we discuss the functional canonical correlation analysis between the functional data and the interval data. To address the interval data, a representative is of necessity. Based on the work by Chavent et al. (2002), the representative can be derived by using the Hausdorff distance between intervals. The canonical analysis can be either the mixed functional-multivariate canonical correlation analysis or a pure functional one. This approach is then applied to the roadside vehicle detection by using Radar devices. It can be observed that the weight functions implicitly contain the information about the distances between the specific lane and the detector.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_34978871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34978871</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_349788713</originalsourceid><addsrcrecordid>eNqNirEKwjAUADMoWK3_kMmtENtCmlWx-AEObuWZvkIkvmhfqvj3ZhBcne4ObiYypUxdlHV1Xogl81Wp0mjdZGLXTmSjCwReWqBAziaDlG92LC8YX4gkh98F1EtHEcdnih4i5GI-gGdcf7kSm_Zw2h-L-xgeE3Lsbo4teg-EYeKuqo1uGr2t_h4_VwE9XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34978871</pqid></control><display><type>article</type><title>Functional canonical analysis between functional and interval data</title><source>AIP Journals Complete</source><creator>Jou, Yow-Jen ; Huang, Chien-Chia ; Wu, Jennifer Yuh-Jen</creator><creatorcontrib>Jou, Yow-Jen ; Huang, Chien-Chia ; Wu, Jennifer Yuh-Jen</creatorcontrib><description>In this study we discuss the functional canonical correlation analysis between the functional data and the interval data. To address the interval data, a representative is of necessity. Based on the work by Chavent et al. (2002), the representative can be derived by using the Hausdorff distance between intervals. The canonical analysis can be either the mixed functional-multivariate canonical correlation analysis or a pure functional one. This approach is then applied to the roadside vehicle detection by using Radar devices. It can be observed that the weight functions implicitly contain the information about the distances between the specific lane and the detector.</description><identifier>ISSN: 0094-243X</identifier><language>eng</language><ispartof>AIP conference proceedings, 2008-09, Vol.1148, p.453-457</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782</link.rule.ids></links><search><creatorcontrib>Jou, Yow-Jen</creatorcontrib><creatorcontrib>Huang, Chien-Chia</creatorcontrib><creatorcontrib>Wu, Jennifer Yuh-Jen</creatorcontrib><title>Functional canonical analysis between functional and interval data</title><title>AIP conference proceedings</title><description>In this study we discuss the functional canonical correlation analysis between the functional data and the interval data. To address the interval data, a representative is of necessity. Based on the work by Chavent et al. (2002), the representative can be derived by using the Hausdorff distance between intervals. The canonical analysis can be either the mixed functional-multivariate canonical correlation analysis or a pure functional one. This approach is then applied to the roadside vehicle detection by using Radar devices. It can be observed that the weight functions implicitly contain the information about the distances between the specific lane and the detector.</description><issn>0094-243X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNirEKwjAUADMoWK3_kMmtENtCmlWx-AEObuWZvkIkvmhfqvj3ZhBcne4ObiYypUxdlHV1Xogl81Wp0mjdZGLXTmSjCwReWqBAziaDlG92LC8YX4gkh98F1EtHEcdnih4i5GI-gGdcf7kSm_Zw2h-L-xgeE3Lsbo4teg-EYeKuqo1uGr2t_h4_VwE9XA</recordid><startdate>20080930</startdate><enddate>20080930</enddate><creator>Jou, Yow-Jen</creator><creator>Huang, Chien-Chia</creator><creator>Wu, Jennifer Yuh-Jen</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20080930</creationdate><title>Functional canonical analysis between functional and interval data</title><author>Jou, Yow-Jen ; Huang, Chien-Chia ; Wu, Jennifer Yuh-Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_349788713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jou, Yow-Jen</creatorcontrib><creatorcontrib>Huang, Chien-Chia</creatorcontrib><creatorcontrib>Wu, Jennifer Yuh-Jen</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jou, Yow-Jen</au><au>Huang, Chien-Chia</au><au>Wu, Jennifer Yuh-Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional canonical analysis between functional and interval data</atitle><jtitle>AIP conference proceedings</jtitle><date>2008-09-30</date><risdate>2008</risdate><volume>1148</volume><spage>453</spage><epage>457</epage><pages>453-457</pages><issn>0094-243X</issn><abstract>In this study we discuss the functional canonical correlation analysis between the functional data and the interval data. To address the interval data, a representative is of necessity. Based on the work by Chavent et al. (2002), the representative can be derived by using the Hausdorff distance between intervals. The canonical analysis can be either the mixed functional-multivariate canonical correlation analysis or a pure functional one. This approach is then applied to the roadside vehicle detection by using Radar devices. It can be observed that the weight functions implicitly contain the information about the distances between the specific lane and the detector.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2008-09, Vol.1148, p.453-457
issn 0094-243X
language eng
recordid cdi_proquest_miscellaneous_34978871
source AIP Journals Complete
title Functional canonical analysis between functional and interval data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20canonical%20analysis%20between%20functional%20and%20interval%20data&rft.jtitle=AIP%20conference%20proceedings&rft.au=Jou,%20Yow-Jen&rft.date=2008-09-30&rft.volume=1148&rft.spage=453&rft.epage=457&rft.pages=453-457&rft.issn=0094-243X&rft_id=info:doi/&rft_dat=%3Cproquest%3E34978871%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34978871&rft_id=info:pmid/&rfr_iscdi=true