Functional canonical analysis between functional and interval data
In this study we discuss the functional canonical correlation analysis between the functional data and the interval data. To address the interval data, a representative is of necessity. Based on the work by Chavent et al. (2002), the representative can be derived by using the Hausdorff distance betw...
Gespeichert in:
Veröffentlicht in: | AIP conference proceedings 2008-09, Vol.1148, p.453-457 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 457 |
---|---|
container_issue | |
container_start_page | 453 |
container_title | AIP conference proceedings |
container_volume | 1148 |
creator | Jou, Yow-Jen Huang, Chien-Chia Wu, Jennifer Yuh-Jen |
description | In this study we discuss the functional canonical correlation analysis between the functional data and the interval data. To address the interval data, a representative is of necessity. Based on the work by Chavent et al. (2002), the representative can be derived by using the Hausdorff distance between intervals. The canonical analysis can be either the mixed functional-multivariate canonical correlation analysis or a pure functional one. This approach is then applied to the roadside vehicle detection by using Radar devices. It can be observed that the weight functions implicitly contain the information about the distances between the specific lane and the detector. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_34978871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34978871</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_349788713</originalsourceid><addsrcrecordid>eNqNirEKwjAUADMoWK3_kMmtENtCmlWx-AEObuWZvkIkvmhfqvj3ZhBcne4ObiYypUxdlHV1Xogl81Wp0mjdZGLXTmSjCwReWqBAziaDlG92LC8YX4gkh98F1EtHEcdnih4i5GI-gGdcf7kSm_Zw2h-L-xgeE3Lsbo4teg-EYeKuqo1uGr2t_h4_VwE9XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34978871</pqid></control><display><type>article</type><title>Functional canonical analysis between functional and interval data</title><source>AIP Journals Complete</source><creator>Jou, Yow-Jen ; Huang, Chien-Chia ; Wu, Jennifer Yuh-Jen</creator><creatorcontrib>Jou, Yow-Jen ; Huang, Chien-Chia ; Wu, Jennifer Yuh-Jen</creatorcontrib><description>In this study we discuss the functional canonical correlation analysis between the functional data and the interval data. To address the interval data, a representative is of necessity. Based on the work by Chavent et al. (2002), the representative can be derived by using the Hausdorff distance between intervals. The canonical analysis can be either the mixed functional-multivariate canonical correlation analysis or a pure functional one. This approach is then applied to the roadside vehicle detection by using Radar devices. It can be observed that the weight functions implicitly contain the information about the distances between the specific lane and the detector.</description><identifier>ISSN: 0094-243X</identifier><language>eng</language><ispartof>AIP conference proceedings, 2008-09, Vol.1148, p.453-457</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782</link.rule.ids></links><search><creatorcontrib>Jou, Yow-Jen</creatorcontrib><creatorcontrib>Huang, Chien-Chia</creatorcontrib><creatorcontrib>Wu, Jennifer Yuh-Jen</creatorcontrib><title>Functional canonical analysis between functional and interval data</title><title>AIP conference proceedings</title><description>In this study we discuss the functional canonical correlation analysis between the functional data and the interval data. To address the interval data, a representative is of necessity. Based on the work by Chavent et al. (2002), the representative can be derived by using the Hausdorff distance between intervals. The canonical analysis can be either the mixed functional-multivariate canonical correlation analysis or a pure functional one. This approach is then applied to the roadside vehicle detection by using Radar devices. It can be observed that the weight functions implicitly contain the information about the distances between the specific lane and the detector.</description><issn>0094-243X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNirEKwjAUADMoWK3_kMmtENtCmlWx-AEObuWZvkIkvmhfqvj3ZhBcne4ObiYypUxdlHV1Xogl81Wp0mjdZGLXTmSjCwReWqBAziaDlG92LC8YX4gkh98F1EtHEcdnih4i5GI-gGdcf7kSm_Zw2h-L-xgeE3Lsbo4teg-EYeKuqo1uGr2t_h4_VwE9XA</recordid><startdate>20080930</startdate><enddate>20080930</enddate><creator>Jou, Yow-Jen</creator><creator>Huang, Chien-Chia</creator><creator>Wu, Jennifer Yuh-Jen</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20080930</creationdate><title>Functional canonical analysis between functional and interval data</title><author>Jou, Yow-Jen ; Huang, Chien-Chia ; Wu, Jennifer Yuh-Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_349788713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jou, Yow-Jen</creatorcontrib><creatorcontrib>Huang, Chien-Chia</creatorcontrib><creatorcontrib>Wu, Jennifer Yuh-Jen</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jou, Yow-Jen</au><au>Huang, Chien-Chia</au><au>Wu, Jennifer Yuh-Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional canonical analysis between functional and interval data</atitle><jtitle>AIP conference proceedings</jtitle><date>2008-09-30</date><risdate>2008</risdate><volume>1148</volume><spage>453</spage><epage>457</epage><pages>453-457</pages><issn>0094-243X</issn><abstract>In this study we discuss the functional canonical correlation analysis between the functional data and the interval data. To address the interval data, a representative is of necessity. Based on the work by Chavent et al. (2002), the representative can be derived by using the Hausdorff distance between intervals. The canonical analysis can be either the mixed functional-multivariate canonical correlation analysis or a pure functional one. This approach is then applied to the roadside vehicle detection by using Radar devices. It can be observed that the weight functions implicitly contain the information about the distances between the specific lane and the detector.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2008-09, Vol.1148, p.453-457 |
issn | 0094-243X |
language | eng |
recordid | cdi_proquest_miscellaneous_34978871 |
source | AIP Journals Complete |
title | Functional canonical analysis between functional and interval data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20canonical%20analysis%20between%20functional%20and%20interval%20data&rft.jtitle=AIP%20conference%20proceedings&rft.au=Jou,%20Yow-Jen&rft.date=2008-09-30&rft.volume=1148&rft.spage=453&rft.epage=457&rft.pages=453-457&rft.issn=0094-243X&rft_id=info:doi/&rft_dat=%3Cproquest%3E34978871%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34978871&rft_id=info:pmid/&rfr_iscdi=true |