Conservative behavior of arsenic and other oxyanion-forming trace elements in an oxic groundwater flow system

Groundwater samples were collected along a flow path in a shallow, fractured tuffaceous aquifer from the Oasis Valley–Beatty Wash region of southern Nevada, USA, and analyzed for a number of oxyanion-forming trace elements including arsenic (As), antimony (Sb), selenium (Se), molybdenum (Mo), and tu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 2009-11, Vol.378 (1), p.13-28
Hauptverfasser: Johannesson, Karen H., Tang, Jianwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 1
container_start_page 13
container_title Journal of hydrology (Amsterdam)
container_volume 378
creator Johannesson, Karen H.
Tang, Jianwu
description Groundwater samples were collected along a flow path in a shallow, fractured tuffaceous aquifer from the Oasis Valley–Beatty Wash region of southern Nevada, USA, and analyzed for a number of oxyanion-forming trace elements including arsenic (As), antimony (Sb), selenium (Se), molybdenum (Mo), and tungsten (W). In addition, ancillary geochemical parameters, including pH, major solute compositions, dissolved silica, dissolved oxygen, and iron and manganese concentrations were quantified in the groundwaters. Arsenic concentrations range from ∼70 nmol/kg up to 316 nmol/kg in groundwaters of the Oasis Valley–Beatty Wash flow system, and generally exhibit increasing concentrations with flow down-gradient along the flow path. Antimony, W, and to a lesser extent, Mo, exhibit similar increasing concentration trends with flow down-gradient in the aquifer, albeit, at lower concentrations levels (e.g., mean ± SD for Sb, W, and Mo are 2.3 ± 0.9 nmol/kg, 7.4 ± 3.7 nmol/kg, and 101 ± 19 nmol/kg, respectively). Selenium concentration, which range between ∼4 and 11 nmol/kg, generally decrease in groundwaters with flow down-gradients in the Oasis Valley–Beatty Wash groundwater flow systems. Inverse modeling of groundwater chemistry evolution from the lower reaches of the Oasis Valley flow path using PHREEQC indicate that the groundwater composition is consistent with mixing of nearly equal proportions of groundwater from upper reaches of Oasis Valley and Beatty Wash groundwater, along with dissolution of volcanic glass, potassium feldspar, and gypsum, followed by calcite precipitation, and formation of secondary zeolites (analcime), clay minerals (Ca-montmorillonite), and cristobalite. The geochemical modeling indicates that the concentrations of As and the other oxyanion-forming trace elements are controlled by dissolution of volcanic glass, water–rock interaction with mineralized zones within the aquifer (i.e., sulfide oxidation), desorption from aquifer surface sites, and mixing of Oasis Valley and Beatty Wash groundwaters.
doi_str_mv 10.1016/j.jhydrol.2009.09.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34971573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169409005472</els_id><sourcerecordid>1777150363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-cd84500f6df9d3850e4013ec233e4122c9c661ebd8ee8b0efa7238e45a06136f3</originalsourceid><addsrcrecordid>eNqFkUFrGzEQhZfSQN2kP6FUl5Ze1h1Ju5L2VIpJm0KghzRnIWtHtsyulEprp_730damx0QMCIbvvRnmVdV7CksKVHzZLXfbY5_isGQA3XIu4K-qBVWyq5kE-bpaADBWU9E1b6q3Oe-gPM6bRTWuYsiYDmbyByRr3JqDj4lER0zKGLwlJvQkTlsszb9HE3wMtYtp9GFDpmQsEhxwxDBl4kOBC1VEmxT3oX80U5G5IT6SfMwTjlfVhTNDxnfn_7K6_379e3VT3_768XP17ba2Taum2vaqaQGc6F3Xc9UCNkA5WsY5NpQx21khKK57hajWgM5IxhU2rQFBuXD8svp08n1I8c8e86RHny0OgwkY91nzppO0lfxFkFGQSkhRwM_PglTK4ghczJ7tCbUp5pzQ6YfkR5OOmoKeA9M7fQ5Mz4HpuWDWfTyPMNmawSUTrM__xazswhXtCvfhxDkTtdmkwtzfsXIgmPOl_4ivJwLLjQ8ek87WY7DY-4R20n30L-zyBNJ5uTE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777150363</pqid></control><display><type>article</type><title>Conservative behavior of arsenic and other oxyanion-forming trace elements in an oxic groundwater flow system</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Johannesson, Karen H. ; Tang, Jianwu</creator><creatorcontrib>Johannesson, Karen H. ; Tang, Jianwu</creatorcontrib><description>Groundwater samples were collected along a flow path in a shallow, fractured tuffaceous aquifer from the Oasis Valley–Beatty Wash region of southern Nevada, USA, and analyzed for a number of oxyanion-forming trace elements including arsenic (As), antimony (Sb), selenium (Se), molybdenum (Mo), and tungsten (W). In addition, ancillary geochemical parameters, including pH, major solute compositions, dissolved silica, dissolved oxygen, and iron and manganese concentrations were quantified in the groundwaters. Arsenic concentrations range from ∼70 nmol/kg up to 316 nmol/kg in groundwaters of the Oasis Valley–Beatty Wash flow system, and generally exhibit increasing concentrations with flow down-gradient along the flow path. Antimony, W, and to a lesser extent, Mo, exhibit similar increasing concentration trends with flow down-gradient in the aquifer, albeit, at lower concentrations levels (e.g., mean ± SD for Sb, W, and Mo are 2.3 ± 0.9 nmol/kg, 7.4 ± 3.7 nmol/kg, and 101 ± 19 nmol/kg, respectively). Selenium concentration, which range between ∼4 and 11 nmol/kg, generally decrease in groundwaters with flow down-gradients in the Oasis Valley–Beatty Wash groundwater flow systems. Inverse modeling of groundwater chemistry evolution from the lower reaches of the Oasis Valley flow path using PHREEQC indicate that the groundwater composition is consistent with mixing of nearly equal proportions of groundwater from upper reaches of Oasis Valley and Beatty Wash groundwater, along with dissolution of volcanic glass, potassium feldspar, and gypsum, followed by calcite precipitation, and formation of secondary zeolites (analcime), clay minerals (Ca-montmorillonite), and cristobalite. The geochemical modeling indicates that the concentrations of As and the other oxyanion-forming trace elements are controlled by dissolution of volcanic glass, water–rock interaction with mineralized zones within the aquifer (i.e., sulfide oxidation), desorption from aquifer surface sites, and mixing of Oasis Valley and Beatty Wash groundwaters.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2009.09.003</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>aerobic conditions ; Aerobic groundwater ; anions ; Antimony ; Aquifers ; Arsenic ; Dissolution ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Flow paths ; Geochemistry ; Groundwater ; groundwater flow ; hydrochemistry ; Hydrogeology ; Hydrology. Hydrogeology ; Inverse modeling ; Mineralogy ; molybdenum ; Nevada ; Oxyanion-forming trace elements ; oxyanions ; selenium ; Silicates ; Trace elements ; tungsten ; Valleys ; Water geochemistry</subject><ispartof>Journal of hydrology (Amsterdam), 2009-11, Vol.378 (1), p.13-28</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-cd84500f6df9d3850e4013ec233e4122c9c661ebd8ee8b0efa7238e45a06136f3</citedby><cites>FETCH-LOGICAL-c458t-cd84500f6df9d3850e4013ec233e4122c9c661ebd8ee8b0efa7238e45a06136f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhydrol.2009.09.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22103819$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Johannesson, Karen H.</creatorcontrib><creatorcontrib>Tang, Jianwu</creatorcontrib><title>Conservative behavior of arsenic and other oxyanion-forming trace elements in an oxic groundwater flow system</title><title>Journal of hydrology (Amsterdam)</title><description>Groundwater samples were collected along a flow path in a shallow, fractured tuffaceous aquifer from the Oasis Valley–Beatty Wash region of southern Nevada, USA, and analyzed for a number of oxyanion-forming trace elements including arsenic (As), antimony (Sb), selenium (Se), molybdenum (Mo), and tungsten (W). In addition, ancillary geochemical parameters, including pH, major solute compositions, dissolved silica, dissolved oxygen, and iron and manganese concentrations were quantified in the groundwaters. Arsenic concentrations range from ∼70 nmol/kg up to 316 nmol/kg in groundwaters of the Oasis Valley–Beatty Wash flow system, and generally exhibit increasing concentrations with flow down-gradient along the flow path. Antimony, W, and to a lesser extent, Mo, exhibit similar increasing concentration trends with flow down-gradient in the aquifer, albeit, at lower concentrations levels (e.g., mean ± SD for Sb, W, and Mo are 2.3 ± 0.9 nmol/kg, 7.4 ± 3.7 nmol/kg, and 101 ± 19 nmol/kg, respectively). Selenium concentration, which range between ∼4 and 11 nmol/kg, generally decrease in groundwaters with flow down-gradients in the Oasis Valley–Beatty Wash groundwater flow systems. Inverse modeling of groundwater chemistry evolution from the lower reaches of the Oasis Valley flow path using PHREEQC indicate that the groundwater composition is consistent with mixing of nearly equal proportions of groundwater from upper reaches of Oasis Valley and Beatty Wash groundwater, along with dissolution of volcanic glass, potassium feldspar, and gypsum, followed by calcite precipitation, and formation of secondary zeolites (analcime), clay minerals (Ca-montmorillonite), and cristobalite. The geochemical modeling indicates that the concentrations of As and the other oxyanion-forming trace elements are controlled by dissolution of volcanic glass, water–rock interaction with mineralized zones within the aquifer (i.e., sulfide oxidation), desorption from aquifer surface sites, and mixing of Oasis Valley and Beatty Wash groundwaters.</description><subject>aerobic conditions</subject><subject>Aerobic groundwater</subject><subject>anions</subject><subject>Antimony</subject><subject>Aquifers</subject><subject>Arsenic</subject><subject>Dissolution</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Flow paths</subject><subject>Geochemistry</subject><subject>Groundwater</subject><subject>groundwater flow</subject><subject>hydrochemistry</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>Inverse modeling</subject><subject>Mineralogy</subject><subject>molybdenum</subject><subject>Nevada</subject><subject>Oxyanion-forming trace elements</subject><subject>oxyanions</subject><subject>selenium</subject><subject>Silicates</subject><subject>Trace elements</subject><subject>tungsten</subject><subject>Valleys</subject><subject>Water geochemistry</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkUFrGzEQhZfSQN2kP6FUl5Ze1h1Ju5L2VIpJm0KghzRnIWtHtsyulEprp_730damx0QMCIbvvRnmVdV7CksKVHzZLXfbY5_isGQA3XIu4K-qBVWyq5kE-bpaADBWU9E1b6q3Oe-gPM6bRTWuYsiYDmbyByRr3JqDj4lER0zKGLwlJvQkTlsszb9HE3wMtYtp9GFDpmQsEhxwxDBl4kOBC1VEmxT3oX80U5G5IT6SfMwTjlfVhTNDxnfn_7K6_379e3VT3_768XP17ba2Taum2vaqaQGc6F3Xc9UCNkA5WsY5NpQx21khKK57hajWgM5IxhU2rQFBuXD8svp08n1I8c8e86RHny0OgwkY91nzppO0lfxFkFGQSkhRwM_PglTK4ghczJ7tCbUp5pzQ6YfkR5OOmoKeA9M7fQ5Mz4HpuWDWfTyPMNmawSUTrM__xazswhXtCvfhxDkTtdmkwtzfsXIgmPOl_4ivJwLLjQ8ek87WY7DY-4R20n30L-zyBNJ5uTE</recordid><startdate>20091115</startdate><enddate>20091115</enddate><creator>Johannesson, Karen H.</creator><creator>Tang, Jianwu</creator><general>Elsevier B.V</general><general>[Amsterdam; New York]: Elsevier</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20091115</creationdate><title>Conservative behavior of arsenic and other oxyanion-forming trace elements in an oxic groundwater flow system</title><author>Johannesson, Karen H. ; Tang, Jianwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-cd84500f6df9d3850e4013ec233e4122c9c661ebd8ee8b0efa7238e45a06136f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>aerobic conditions</topic><topic>Aerobic groundwater</topic><topic>anions</topic><topic>Antimony</topic><topic>Aquifers</topic><topic>Arsenic</topic><topic>Dissolution</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Flow paths</topic><topic>Geochemistry</topic><topic>Groundwater</topic><topic>groundwater flow</topic><topic>hydrochemistry</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>Inverse modeling</topic><topic>Mineralogy</topic><topic>molybdenum</topic><topic>Nevada</topic><topic>Oxyanion-forming trace elements</topic><topic>oxyanions</topic><topic>selenium</topic><topic>Silicates</topic><topic>Trace elements</topic><topic>tungsten</topic><topic>Valleys</topic><topic>Water geochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johannesson, Karen H.</creatorcontrib><creatorcontrib>Tang, Jianwu</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johannesson, Karen H.</au><au>Tang, Jianwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservative behavior of arsenic and other oxyanion-forming trace elements in an oxic groundwater flow system</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2009-11-15</date><risdate>2009</risdate><volume>378</volume><issue>1</issue><spage>13</spage><epage>28</epage><pages>13-28</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>Groundwater samples were collected along a flow path in a shallow, fractured tuffaceous aquifer from the Oasis Valley–Beatty Wash region of southern Nevada, USA, and analyzed for a number of oxyanion-forming trace elements including arsenic (As), antimony (Sb), selenium (Se), molybdenum (Mo), and tungsten (W). In addition, ancillary geochemical parameters, including pH, major solute compositions, dissolved silica, dissolved oxygen, and iron and manganese concentrations were quantified in the groundwaters. Arsenic concentrations range from ∼70 nmol/kg up to 316 nmol/kg in groundwaters of the Oasis Valley–Beatty Wash flow system, and generally exhibit increasing concentrations with flow down-gradient along the flow path. Antimony, W, and to a lesser extent, Mo, exhibit similar increasing concentration trends with flow down-gradient in the aquifer, albeit, at lower concentrations levels (e.g., mean ± SD for Sb, W, and Mo are 2.3 ± 0.9 nmol/kg, 7.4 ± 3.7 nmol/kg, and 101 ± 19 nmol/kg, respectively). Selenium concentration, which range between ∼4 and 11 nmol/kg, generally decrease in groundwaters with flow down-gradients in the Oasis Valley–Beatty Wash groundwater flow systems. Inverse modeling of groundwater chemistry evolution from the lower reaches of the Oasis Valley flow path using PHREEQC indicate that the groundwater composition is consistent with mixing of nearly equal proportions of groundwater from upper reaches of Oasis Valley and Beatty Wash groundwater, along with dissolution of volcanic glass, potassium feldspar, and gypsum, followed by calcite precipitation, and formation of secondary zeolites (analcime), clay minerals (Ca-montmorillonite), and cristobalite. The geochemical modeling indicates that the concentrations of As and the other oxyanion-forming trace elements are controlled by dissolution of volcanic glass, water–rock interaction with mineralized zones within the aquifer (i.e., sulfide oxidation), desorption from aquifer surface sites, and mixing of Oasis Valley and Beatty Wash groundwaters.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2009.09.003</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2009-11, Vol.378 (1), p.13-28
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_34971573
source ScienceDirect Journals (5 years ago - present)
subjects aerobic conditions
Aerobic groundwater
anions
Antimony
Aquifers
Arsenic
Dissolution
Earth sciences
Earth, ocean, space
Exact sciences and technology
Flow paths
Geochemistry
Groundwater
groundwater flow
hydrochemistry
Hydrogeology
Hydrology. Hydrogeology
Inverse modeling
Mineralogy
molybdenum
Nevada
Oxyanion-forming trace elements
oxyanions
selenium
Silicates
Trace elements
tungsten
Valleys
Water geochemistry
title Conservative behavior of arsenic and other oxyanion-forming trace elements in an oxic groundwater flow system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservative%20behavior%20of%20arsenic%20and%20other%20oxyanion-forming%20trace%20elements%20in%20an%20oxic%20groundwater%20flow%20system&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Johannesson,%20Karen%20H.&rft.date=2009-11-15&rft.volume=378&rft.issue=1&rft.spage=13&rft.epage=28&rft.pages=13-28&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2009.09.003&rft_dat=%3Cproquest_cross%3E1777150363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777150363&rft_id=info:pmid/&rft_els_id=S0022169409005472&rfr_iscdi=true